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Abstract. We consider the polynomialk, (z) = «,(z" + b,_1z"~1 + ---) orthonormal with
respect to the weight exp/A(z + 1/z)) dz/27iz on the unit circle in the complex plane. The
leading coefficient,, is found to satisfy a difference-differential (spatially discrete) equation which
is further proved to approach a third-order differential equation by double scaling. The third-order
differential equation is equivalent to the PairéeVv equation. The leading coefficient and second
leading coefficient o6, (z) can be expressed asymptotically in terms of the Paénlefunction.

1. Introduction

In this paper, we discuss the orthonormal polynomials with respect to the weight egp+
1/z)) dz/2miz on the unit circle in the complex plane [1],

— d
f@ (@) 6 (@) eﬁwmﬁ =6  m.n=0 (1.1)
Tz

where the integral is over the unit circle, apgl(z) means the complex conjugated)f (z), A

is a positive parameter. The polynomiglgz) = «,z" + - - - have an explicit representation in
terms of the Toeplitz determinani®, (1) = D, (exp(2+/A cosd)) [1]. Here we are interested
in analysing the properties of the leading coefficient,). As discussed in [1]«? can be
expressed in terms of the Toeplitz determinants,

ICZ _ anl(}‘)
" D)
andi?(1) — 1, asn — oo for anyx (see (12.3.19) and (10.2.4) in [1]).

From the orthonormal property and the recursion formula of¢ife we show thak,
satisfies the following difference-differential equation

(1.2)

2 2 2
(1 T Gl S L N 1(</<32>s> o w3
2s Ky Kn 4 Kpv1 Kper — Ky 4 Kn

wheres = /A, and(x2), = (d/ds)(x?). If we make the ansatz
Cc1

(n+1)*
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K3(s) =1+ R(T (n, s)) (1.4)
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with T'(n, s) = t(n, s) + €(n, s), and

B
tns) = 2D (”S-Q (1.5)

c2 n+l

then we obtain, as, s — oo, andczs/(n+1) — 1, ifwe choose:% = 4, the other parameters
then satisfyr = 2,8 = 2,c1 = =213, ¢, = —1/2Y3, €(n, 5) = O(1/(n + DY), and the
function R(r) satisfies

(R")? —8(R)3+4t(R)?> —2R'R” +0o(1) = 0. (1.6)

If we drop the @1) term, this equation is another form of the PaiéMequation discussed by
Tracy and Widom in [2]. Since equation (1.3) contains a continuous independent variable
and a discrete independent variah)det us call (1.3) a spatially discrete Pairgelv equation
to distinguish from the discrete Pain&¥ equation [8] which has one discrete independent
variable.

Therefore, we have another proof of the asymptotic formula

21/3
K2=1———R(@t)+--- (1.7)
" (n + 113
where R'(r) = —q?(t), andq(r) satisfies the Painlévll equationg” = rq + 2¢°. This

asymptotic formula was first proved by Bagkal [3] by studying the corresponding Riemann—
Hilbert problems. They discussed much more asymptotic properties (see [3] for details).

The asymptotic formula (1.7) is used for investigating the distribution of the ldpgththe

longest increasing subsequence of a random permutation [3], by discussing the asymptotics of
D,-1(x) = e [, k2. The distribution of, (asn — o0) is the same as the distribution of

the largest eigenvalue of the Gaussian unitary ensemble (GUE) in random matrix theory [3-5].
In [5], Tracy and Widom used a different method to study the distributidjntof investigating

the asymptotics oD, (1) directly. They also obtained the distribution of the length of the
longest increasing subsequence of an odd permutation [5].

In [6], Hisakado discussed the same polynomials as in this paper, and he also obtained
the Painle® Il equation from a discrete equation which is called the discrete string equation
in [6]. The difference is as follows. In [6], Hisakado discussed the fact that the constant
term of the polynomia, (z) /k, satisfies a discrete equation (discrete string equation). In this
paper, we discuss,, the coefficient of the leading term ¢f, (z), which satisfies a spatially
discrete equation (difference-differential equation). And the discrete string equation in [6] is
convergent to the original Painlevl (7 = xq + 24°%). In this paper, the spatially discrete
equation is convergent to a third-order differential equation. As discussed by Tracy and Widom
in [2], this third-order equation is equivalent to the Paiglévequation.

Itis known that the Painlévequations have discrete analogues. See [7—10] and references
therein for the discrete ay-difference Painle® equations. In this paper, we show that the
Painlee Il equation has a spatially discrete version. So far, to my knowledge, the spatially
discrete versions for Painlé\equations are not known very well. In [7], Folasl discussed
another spatially discrete integrable equation, which is obtained from orthonormal polynomials
on the real line satisfying a recursion formula in the form (2.11). It is discussed in [7] that the
simultaneous solution of the spatially discrete equation in [7] and of the discrete Rainlev
equation solves a special case of the Pail&vequation.

This paper is organized as follows. In the next section, we state the recursion formula
for the orthonormal polynomials on the unit circle, which is proved in [1]. In section 3,
we use the recursion formula and the orthonormal property of the polynomials to investigate
the leading coefficient, (s), which is found to satisfy a difference-differential equation, or
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spatially discrete equation. And we also obtain a formula for the second leading coefficient
of ¢,(z) in terms ofx, and«,_;. In section 4, the difference-differential equation is proved

to tend to the second Painkequation in a third order equation form. Then we obtain the
asymptotics of the coefficients for the leading term and for the second leading tegrtznf

2. Recursion formula for the polynomials

Let us consider the orthonormal polynomigis(n = 0,1,2, ...) on the unit circle in the
complex plane defined by (1.1). If we lgt?) = exp2v/Acosd) = exp(v/A(z + 1/z)),
z = €7, then (1.1) becomes

/ﬁ ¢>n(ei9)¢m(e‘9)f(é9)g% = Sum m,n = 0. (2.1)

Since 2/ cost is even ing, the coefficients o, are real [1]. Itis also proved in [1] tha,
satisfy the recursion formulae

anlz¢n71(z) = Kn Py (2) — o (O) d’: (z) (22)

Kn¢n+l(z) = Kn+1z¢n (Z) + ¢n+1(o) (p:: (Z) (23)
Here the **' is defined as

i) =@+ a1zt +agd" (2.9)

if ¢,(z) = apz" +a,_12" 1+ --- +ap. Notice that forg,(z), the coefficients are real as
mentioned above.

Since we are interested in the leading coefficientwe set¢,(z) = «, p.(z), and for
simplicity we denote = +/A. Then (2.1) becomes

T ., df 1
/pn(ée)pm(ee)f(é‘))gﬂmﬁ m,n > 0. (2.5)

T n

If we eliminate¢ (z) in (2.2) and (2.3), we obtain

Kn+1 ¢n+1(0) Kn—1 _ _ ¢n+1(0)
Z( P n(2) — 50 & ¢n71(Z)> = ¢u+1(2) #,(0) @n(2). (2.6)
By ¢, (2) = x, p.(2), equation (2.6) becomes
Pu1(0) K74 B Pu+1(0)
Z<pn(z) T @ 2 pn_l(z)> = pu+1(2) — 220) Pu(2). (2.7)

For usage in later discussions, let us record this as a lemma, which is due to[Szeg

Lemma 1. The orthogonal polynomials, (z) defined by (2.5) on the unit circle in the complex
plane satisfy the following recursion formute= 1, 2, . . .

2(Pn(2) + Cupu-1(2)) = pu+1(z) + By pu(2) (2.8)
where
_ pn+l(0) K,1271
n — = pn(o) Kf (29)
pn+l(0)
B, = — . 2.10
pn(0) (2.10)

As a remark, the recursion formula for the orthogonal polynomials on the real line takes the
form [1, 11]

ZPn = Qn Pn+1 + bn Pn + CnPn—-1- (211)
However, we have seen that on the unit circle with the weightd f (z) dz/z, the coefficient
of p,_1 in the recursion formula contains
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3. Spatially discrete equation fork.,(s)

In this section, we use the orthogonal relation (2.5) and the recursion relation (2.8) to show
thatx, (s) satisfies a spatially discrete equation (difference-differential equation). In the next
section we show that the continuous limit of this spatially discrete equation gives a third-order
ordinary differential equation, which is equivalent to the Paialbequation.

Let us write (2.5) in the form

N dz
(Pns Pm) = % Pn(2) pm(2) f(2) ? = 8um I m,n =0 (31)
whereh, = 2ri/k?, and the integraf is taken over the unit circle oriented anticlockwise in

the complex plane. We will use the notation €& f(z) dz/z for simplicity. First it is easy to
show the following identities:

fz" w p(z)du = fz”‘ 0Pm @) pu(z)dp (3.2)
z 0z
fzk Pn(2) pa(2) dp = ygz"‘ P (@) pu(z) du (3.3)

by usingz = €, and replaced by-6. Recallp,(z) = p,(2).
Now, consider (3.1) withn = n,

mzfm@%mw%@“m%
<

=%fm®%mwﬁﬁwgmw»

Then by integration by parts and using (3.2) and (3.3), we have

hy = %fzz ang(Z) pn(z) du + f 22 pa(2) pa(z) du + % 7{ 2pn(2)pa(2) dit. (3.9)
As a remark for the calculation of this formula, the term wher&) is differentiated leads to

an extra term like the first one in (3.4) wit replaced by-1. It can be omitted due to the
orthogonality.

Sincep, (z) = p(z) = p(1/z) onthe unitcircle, by the Cauchy integral formula, the right-
hand side of the above equation can be calculated, and the result involves all the coefficients
of p,(z). This does not particularly help the investigationcpf Here, by using the recursion
formula and the orthonormal property, the right side of (3.4) can be expressed in terms of
hu_1, h,, hy+1 and their first derivatives.

We need to consider two types of integrals,

3 L -
f Zk ale?n (Z) Pn (Z) dHf % Zk Pn (Z) Pn (Z) d/‘l’

for (3.4), wherek is integer. In this paper, we do not discuss the general formula. We just
consider the integrals in (3.4), and the formulae are given in the following lemmas.

Lemma 2.

jgz Pu(2) pr(2) die = (B, — Cy) hyy (3.5)



Orthonormal polynomials and Painléul equation 7211

Proof. Multiply p, (z) on both sides of (2.8). Then integrating on both sides yields the result.

O

Lemma 3.
%Zzpn(Z)Pn(Z) dM = —(Cps1(B, — Cy) — (B, — Cn)z +Cy(By—1— Cr1) by, (36)
n=12....
Proof. Let! = ¢ z2 p,(z) p.(z) diu. By lemma 1, we have

Zzpn = Pn+2 T Bn+1pn+1 - Cn+1zpn + anpn - anzpnfl
which implies by (3.1)

I = f((_crﬁl + Bn) IPn — nZZPn—l) Pn (Z) dM (37)

Again by lemma 1,
Z2pn—l =2Zpn T Bn—lpn + ijlpn—l - ZBn—lcn—lpn—Z - Cn—lzzpn—2~

Since(p,—1, pu) = (2 pn—2, px) = 0, we then obtain from (3.7)

I = %{(_Crﬁl + Bn)zpn - Cn(zpn + Bn—lpn - Cn—lzzpn—Z)}Ed/'L

= %{(_Crﬁl + B, — Cn)(pn+l + Bnpn - chpn—l)
_Can—lpn + CnCn—lzzpn—Z}ﬁ d/’L
= (_Cn+l + Bn - Cn)(Bn - Cn)hn - Can—lhn + CnCn—lhn
Where<ZPn—1, pn) = (Zzpn—Z» pn) = hn- O

In order to evaluate the integr&f® dp,/dz, p.) in (3.4), we need to consider the second
leading coefficient op,(z). Suppose

pn(@) =" +by_a" (3.8)
Because?dp,(z)/dz = nz"** + (n — Db,_12" +- - -, we set

Py
Zzp(Z)

=n(ppsrt Unpn t--0).
9z

Then by
n+l n n n—1 n+l 1 n
Z +an +"'+/‘Ln(z +bn—1Z +"'):Z +11-- bn—lz +...
n

it follows that

Mn = (1_ }>bn71 —b,. (39)

n

Since(z29p, /dz, pa) = nuahy, we have proved the following lemma.
Lemma 4.

op,(z) ——
7§ 2P aZ(Z) Pe(@ At = (1(by1 — by) — bu_1)hy. (3.10)
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Because we want an equation for the leading coeffigigne need to express the second
leading coefficiend, in terms ofx,. First, theb, can be expressed in termsBf andC,.

Lemma 5. For the second leading coefficidnt 1 (n = 1, 2, .. .) of p, defined by (3.8), there
are the following properties:
(a) by1—by, =B, —C, (311)

hn
: 3.12
s (3.12)

1
(b) ;bn—l = _Cn(Bn—l - Cn—l) -

Proof. By lemma 1,an(Z) = pn+l(Z) + Bnpn(Z) - Cannfl(Z)- By (38)1 iPn =
Pu+1 + (by_1 — b,)p, +---. Then we haveb,_1 — b,)h, = B,h, — C,h, by considering
(zpn, pn) in the two ways.

To prove the second formula (3.12), consider

J = fpm(z)me‘(“(l/z”dz. (3.13)
Using integration by parts,

1 _ L
J= N ?g Pu1(2) pa(2) €77 d€*

-1 d 1 _0p, _7
==t Pndu + - 7{ P+l 2 du + 51{ Pn+1(ZPy) dp
s 0z K 0z

where (p,s+1,28p,/82) = 0, and(pu+1,z2pn) = hprr. AN 20pnea/dz = (n + D"
+n/(n + Db,2" +--). Setzdp,s1/dz = (n + 1)(pus1 + Yups + ---), Which implies
(20pn+1/92, pu) = (n + D)y,h,. Then by

n+l +

PniitVupnt---=2 b+

n+1
we obtainy, + b, = [n/(n + 1)]b,, SOy, = —(n + 1)71b,. Thus

J = %b,lh,l + hpet. (3.14)
On the other hand, the integralcan be evaluated by using the recursion formula (2.8)
2Pn+1 = Pp+2 t Busappsr — Cpsapnst — Cpaa By py + Cre1Cuzpn—1
which gives
J = (zpn+1, Pn) = —Cpaa(By — Cp)hy. (3.15)
By (3.14) and (3.15), we obtain (3.12). O

We have seen by the last four lemmas that the right-hand side of (3.4) can be expressed in
terms of B, andC,,. The following lemma gives the formulae 8f,, C, in terms ofx,,.

Lemma 6. The coefficientss,,, C, in the recursion formula (see (2.9) and (2.10)) can be
expressed as follows:

2
@ B, —C,=— (:K)z (3.16)
_ (k3)s
(b) B, = _m (3.17)
2 2
© C, =t W)y (3.18)

wherex, is the leading coefficient ef, defined by (1.1), andc?), = dk2(s)/ds.
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Proof. Sinceh, = (p,, p,), we have

dh, [ 1 o
ds(S) = %Pn(z)pn(z) <z + 7> du = Zyg 2P Padie (3.19)

Z

where we have use@®p, /ds, p,) = (pn,dp./ds) = 0, since de@®p,/ds) < n — 1,
degdp,/ds) < n — 1. Then by lemma 1 and the notatiap = 27i/«x2, we have the
first formula (3.16). By (2.9) and (2.1Q), = Bn/cffl/;cf. We then obtain (3.17) and
(3.18). g

By lemmas 2—4, equation (3.4) is changed to
n 1 5
1= g(bnfl - bn) - ;bnfl - Cn+l(Bn - Cn) + (Bn - Cn)

1
- Cn(anl - Cnfl) + 7(Bn - Cn) (320)
N
By lemma 5, this equation further becomes

n+1 h,

(B = C) + == = 1= Coua(By = Co) + (B, = Cc)?=0. (3.21)

n—1

Therefore, by lemma 6, we have proved the following theorem.

Theorem 1. The leading coefficiem, (s) of the orthonormal polynomialg, (z; s) defined by
(1.1) satisfies the following spatially discrete equation (difference-differential equation):

n+ 1D Kpa— ke LRy (ks 1<<K,$2>s>2:0 (3.22)
K

n

25 k2 K2 4 k2, k2, —«k? 4
wheres = /A, and (k?), = d/ds(«?).

This seems to be a new result fQi(s), the leading coefficients of the orthonormal polynomials
¢n(z; 5), with the weight exgs (z + 1/z)) dz/z on the unit circle. In the next section, we show
that asn,s — oo and 2/(n + 1) — 1, this equation is reduced to a third-order ordinary
differential equation which is equivalent to the Pairdelequation.

4. Painle\e Il equation

We have shown that? satisfies equation (3.22). As mentioned in sectior?Isatisfies the
boundary conditioncnz(s) = 1+0(1), asn — oo for all s. In this section, we compute the
asymptotics of? — 1, asn, s — oco. We will see that the asymptotics involves the second
Painle\e function.

Equation (3.22) has two independent variablesnds. To study the asymptotics, we
use ‘similarity’ reduction, or the so-called double-scaling method. By comparing the first two
terms in (3.22), we consider the case whenl ands are of the same order as they are large,
and let

c3s cot(n,s)

n+1l" (n+ 17 (4.1)
2 _ ‘1

k=14 e R(T 0 s) (4.2)

where we assumé& (n, s) = t(n, s) + €(n, s), the leading terni(n, s) is defined by (4.1),
€(n, s) is a smaller term as, s — oo, anda, B will be discussed later. We want to determine
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the constants, 8, c1, ¢z, c3, suchthatas, s — oo, the difference-differential equation (3.22)
is reduced to an ordinary differential equationri).

Let us consider the approximate expression&pf,, i 2., —«2 and(k2,,)s — (i), in terms
of R’ and the higher-order derivatives. Hetemeans the limit of R(T + AT) — R(T))/AT.
The primary part oAT is At, and it can be calculated thatass — oo, andczs/(n+1) — 1,
we have

_ B c3s —1+p 1
e+ ds) = 1n) = = s e DEF O((n * 1>2"f’>

1 1
= — +0 .
co(n +1)1-F <n + 1)

We see thag should be chosen such that08 < 1, and then the rest term i(QY (n + 1)).

For the asymptotics af?,; —«2 and(k?,,), — (k2);, the higher-order terms must be considered

in order to have all the terms in the first three leading orders in the expansion of left-hand side
of (3.22). Therefore, we have the following:

Cq
tn+l,s)—t(n,s) = ———+---
(1+105) = 100,9) = o~
2 2 ’ C5 " C6 1 c7 [&:]
_ =R + + R +
Kp+1 — Ky (n + 1)lre—p (n + 1)2+e—28 (n + 1)3+—3 (n + )i+
2 2 ’ C5 ” Ce
—_ = —R +
Kn—1 Kn (}’l + l)1+a—/3 (I’l + l)2+ot—2,3
—R"” “ — R ‘8 +
(n+ 1)3+a—3ﬁ (n+ 1)l+oz
2 cc3 , 1
K — ...
s ==, R s 1y
2 2 €1€3 " C4 R” Cé%
. — s = R +— +
(K41 (G co(n + 1)Lre—p < (n+1)1-# 2 (n+ 1)2—2/3
where
1 1
cp=—— C5 = C1C4 Ce = 7616“21 (43)
Cc2 2
7= éclci cg = —cia. (4.4

Now write (3.22) in the following form:

n+1l 1
5 (s (Gay = 1) = (g = k) (egag = 16) + 206, ()
1k, — k2 1 ((kd)s)?
—a s () — g (G — k) = 0.
n+l n
By substituting the asymptotic formulae above into this equation, we obtain
S1+ S+ 83+8,+0(1) =0 (4.5)
where
§ c1c5 cot R’
172, (n+ DB ) (n+ 1)Lv—p
csR’ ceR” c7R"” N cgR
(n + 1)1+a—ﬂ (n+ l)2+o(—2ﬂ (n+ 1)3+a—3/3 (n+ 1)l+a
5, c2(R)? . _2csc7R'R" 2c5csR'R c2(R")?

= (n+ l)2+2a—2,3 (n+ ]_)4+2a—4,3 (n+ 1)2+2a—/3 - (n+ ]_)4+2a—4,3
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e . (e cak” )}
dey n+DYeB| ¢ n+ Db co(n+ DI\ (n+11-F 2+ 1228
o= (ClC3>2 (R cs(ﬁcs)z (RY?
4/(5+l 2 (n+1)8%*®R=36 42\ ¢, (n + 1)3+%=3p"

We have seenthat@ g < 1. Fora, since/c,f(s) — 1, asn — oo for all s, we have
a > 0. Consider the orders of the terms on the left-hand side of (4.5). The coefficients of
(RH?, R'R",R'R”, (R")?have orders @ +a — ), 2(1+a—pB)+(1—B), 2(L+a— B)+2(1—B),
2(1 +a — B) + 2(1 — B), respectively. The coefficients ofR")?, RR’, (R')® have orders
21+a—B)+B,2Ad+a—pB)+B,2(L+a — B) + (1 +a — B), respectively. And the@) in
(4.5) contains higher-order terms which do not concern us. To determine the vatuesidf
B, the only choice is to set the coefficients®R”, (R”)?, t(R")?, RR’ and(R’)® to be of the
same order. So we have¢l>— 8) = B = 1+a — 8. The solution is unique = % B = :% So
(4.5) becomes

(R/)Z R/R//
Y+ P+ 1o
+(A3R'R + AsR'R" + As(R")? + Agt (R)* + A7(R)?) 1
(n+1)2
1

where
C3 C1C3 1 Cc1C3 2
A1:f7C5+C§+* —_—
2 C2 4 C2

c3C1C3 1/cic3 2
A= ———cgt+-| — ) ¢4

2 C2 4 C2
€3 €1€3
A3 = ———cg+ 2c5¢cg
2 Cc2
C3 C1C3 1 Cc1C3 2
Ay = ——c7+ 2507+ =| — ci
2 C2 8 Cc2
A5 = —Cé
1 2
A6 = —§C1C3C5

1 C1C3 2
Ar=—Z(—=—) ¢s.

TheA;s(j =1,2,...,7) can be expressed in termsaf c,, c3 by using (4.3) and (4.4), and
it is seen thatd, = 0.
Look at equation (4.6). As — oo, the leading term gives an equatidn- c3/4)(R')? =
0. If we choose3 # 4, thenR’ = 0, which implies«?(s) = 1 + constant(n + )¥/3 + ...,
asn,s —»> oo,c3s/(n+1) — 1. Ifwe chooser§ = 4, thenA; = A3 =0, and a1 — oo,
equation (4.6) is reduced to
AsR'R" + As (R")? + Agt(R)?+ A7 (RH® = 0. (4.7)
In [2], Tracy and Widom discussed two forms of the Paiglévequation
1R” 1 (R//)Z R ,
_ — — + R = 0 48
2 R 2(R)? R (4.8)
(R")?+4R'(R)?>—tR'+R) =0 (4.9)
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whereR'(r) = —q(t)?, andq (¢) satisfies the original Painléul ¢” = tq +24°. Equation (4.9)
is called the Jimbo—Miwa—Okamoto-form for Painlew I. Eliminating R in (4.8) and (4.9)
gives another form,

—2R'R" +(R"?+4t(R)?>—8(R)® =0. (4.10)

In (4.7), it can be calculated thdy = —2As sincec§ = 4. LetAg = 4A5 andA; = —8As.
These two equations can be written as algebraic equations @f by using (4.3) and (4.4),
and the solution is

cg =218 (4.11)
1
For thecs, since we consider positive ands, c3 is positive, i.ecz = 2. That implies that
if we choosec; = —2%3, ¢, = —1/2%3,¢3 = 2 in (4.1) and (4.2), the spatially discrete

equation (3.22) in theorem 1 is reduced to the Pa@léequation (4.10). That is why we call
(3.22) a spatially discrete PainkeVl equation. And it is seen thatn, s) = O(1/(n + 1)1/3)
because the last term in (4.6)§S)rder higher than the preceding term.

Therefore, we have a formal proof of the following theorem which was first proved by
Baik et al [3] by studying the corresponding Riemann—Hilbert problem.

Theorem 2. Asn, +/A — oo, and Zﬁ/(n +1) — 1, K,f(k) has the following asymptotic
formula:
1/3

1
(n + 1)1/3 (n + 1)2/3)

wherer is defined bv/A/(n + 1) = 1—¢/[2Y3(n + 1)%3], R'(t) = —q?(¢), andq (¢) satisfies
Painlewe Il ¢” = tq + 24°.

K2 =1— R(t) + o( (4.13)

As discussed in [3], the PainlevI function ¢(r) in theorem 2 satisfies the boundary
conditiong(r) ~ —Ai(t), ast — oo, where Air) is the Airy function. This boundary
condition can also be obtained by the asymptoticg,ah terms of an exponential function
[1] and the Painle® Il equation that(¢) satisfies. The Painlévll function ¢(z) with this
boundary condition is discussed by Hastings and McLeod in [12].

Finally, by lemmas 5 and 6 and theorem 2, we obtain the asymptotics for the second
leading coefficient of, (z).

Theorem 3. For the polynomialp, (z; 1) = «, (L) (z* + b,_1(1) 2”1 + - - ) defined by (1.1),
the second leading coefficient(i) b,_1(1) has the asymptotic formula
k(X)) by_a (M) 1 1
N RS e O(<n ¥ 1)2/3)

asn, VA — oo, andzﬁ/(n + 1) — 1, wherer and R(¢) are the same as in theorem 2.

(4.14)
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