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Abstract. We consider the polynomialsφn(z) = κn(z
n + bn−1z

n−1 + · · ·) orthonormal with
respect to the weight exp(

√
λ(z + 1/z)) dz/2π iz on the unit circle in the complex plane. The

leading coefficientκn is found to satisfy a difference-differential (spatially discrete) equation which
is further proved to approach a third-order differential equation by double scaling. The third-order
differential equation is equivalent to the Painlevé II equation. The leading coefficient and second
leading coefficient ofφn(z) can be expressed asymptotically in terms of the Painlevé II function.

1. Introduction

In this paper, we discuss the orthonormal polynomials with respect to the weight exp(
√
λ(z +

1/z)) dz/2π iz on the unit circle in the complex plane [1],∮
φn(z) φm(z) e

√
λ(z+1/z) dz

2π iz
= δnm m, n > 0 (1.1)

where the integral is over the unit circle, andφm(z)means the complex conjugate ofφm(z), λ
is a positive parameter. The polynomialsφn(z) = κnzn + · · · have an explicit representation in
terms of the Toeplitz determinantsDn(λ) = Dn(exp(2

√
λ cosθ)) [1]. Here we are interested

in analysing the properties of the leading coefficientκn(λ). As discussed in [1],κ2
n can be

expressed in terms of the Toeplitz determinants,

κ2
n =

Dn−1(λ)

Dn(λ)
(1.2)

andκ2
n(λ)→ 1, asn→∞ for anyλ (see (12.3.19) and (10.2.4) in [1]).

From the orthonormal property and the recursion formula of theφns, we show thatκn
satisfies the following difference-differential equation

n + 1

2s

(κ2
n)s

κ2
n

− κ
2
n−1− κ2

n

κ2
n

+
1

4

(κ2
n+1)s

κ2
n+1

(κ2
n)s

κ2
n+1− κ2

n

− 1

4

(
(κ2
n)s

κ2
n

)2

= 0 (1.3)

wheres = √λ, and(κ2
n)s = (d/ds)(κ2

n). If we make the ansatz

κ2
n(s) = 1 +

c1

(n + 1)α
R(T (n, s)) (1.4)
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with T (n, s) = t (n, s) + ε(n, s), and

t (n, s) = (n + 1)β

c2

(
c3 s

n + 1
− 1

)
(1.5)

then we obtain, asn, s →∞, andc3 s/(n+1)→ 1, if we choosec2
3 = 4, the other parameters

then satisfyα = 1
3, β = 2

3, c1 = −21/3, c2 = −1/21/3, ε(n, s) = O(1/(n + 1)1/3), and the
functionR(t) satisfies

(R′′)2 − 8(R′)3 + 4t (R′)2 − 2R′R′′′ + o(1) = 0. (1.6)

If we drop the o(1) term, this equation is another form of the Painlevé II equation discussed by
Tracy and Widom in [2]. Since equation (1.3) contains a continuous independent variables,
and a discrete independent variablen, let us call (1.3) a spatially discrete Painlevé II equation
to distinguish from the discrete Painlevé II equation [8] which has one discrete independent
variable.

Therefore, we have another proof of the asymptotic formula

κ2
n = 1− 21/3

(n + 1)1/3
R(t) + · · · (1.7)

whereR′(t) = −q2(t), andq(t) satisfies the Painlevé II equationq ′′ = tq + 2q3. This
asymptotic formula was first proved by Baiket al [3] by studying the corresponding Riemann–
Hilbert problems. They discussed much more asymptotic properties forκn (see [3] for details).
The asymptotic formula (1.7) is used for investigating the distribution of the lengthln of the
longest increasing subsequence of a random permutation [3], by discussing the asymptotics of
Dn−1(λ) = eλ

∏∞
k=n κ

2
k . The distribution ofln (asn→ ∞) is the same as the distribution of

the largest eigenvalue of the Gaussian unitary ensemble (GUE) in random matrix theory [3–5].
In [5], Tracy and Widom used a different method to study the distribution ofln by investigating
the asymptotics ofDn(λ) directly. They also obtained the distribution of the length of the
longest increasing subsequence of an odd permutation [5].

In [6], Hisakado discussed the same polynomials as in this paper, and he also obtained
the Painlev́e II equation from a discrete equation which is called the discrete string equation
in [6]. The difference is as follows. In [6], Hisakado discussed the fact that the constant
term of the polynomialφn(z)/κn satisfies a discrete equation (discrete string equation). In this
paper, we discussκn, the coefficient of the leading term ofφn(z), which satisfies a spatially
discrete equation (difference-differential equation). And the discrete string equation in [6] is
convergent to the original Painlevé II (q ′′ = xq + 2q3). In this paper, the spatially discrete
equation is convergent to a third-order differential equation. As discussed by Tracy and Widom
in [2], this third-order equation is equivalent to the Painlevé II equation.

It is known that the Painlev́e equations have discrete analogues. See [7–10] and references
therein for the discrete orq-difference Painlev́e equations. In this paper, we show that the
Painlev́e II equation has a spatially discrete version. So far, to my knowledge, the spatially
discrete versions for Painlevé equations are not known very well. In [7], Fokaset aldiscussed
another spatially discrete integrable equation, which is obtained from orthonormal polynomials
on the real line satisfying a recursion formula in the form (2.11). It is discussed in [7] that the
simultaneous solution of the spatially discrete equation in [7] and of the discrete Painlevé I
equation solves a special case of the Painlevé IV equation.

This paper is organized as follows. In the next section, we state the recursion formula
for the orthonormal polynomials on the unit circle, which is proved in [1]. In section 3,
we use the recursion formula and the orthonormal property of the polynomials to investigate
the leading coefficientκn(s), which is found to satisfy a difference-differential equation, or
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spatially discrete equation. And we also obtain a formula for the second leading coefficient
of φn(z) in terms ofκn andκn−1. In section 4, the difference-differential equation is proved
to tend to the second Painlevé equation in a third order equation form. Then we obtain the
asymptotics of the coefficients for the leading term and for the second leading term ofφn(z).

2. Recursion formula for the polynomials

Let us consider the orthonormal polynomialsφn(n = 0, 1, 2, . . .) on the unit circle in the
complex plane defined by (1.1). If we letf (eiθ ) = exp(2

√
λ cosθ) = exp(

√
λ(z + 1/z)),

z = eiθ , then (1.1) becomes∫ π

−π
φn(e

iθ ) φm(eiθ )f (eiθ )
dθ

2π
= δnm m, n > 0. (2.1)

Since 2
√
λ cosθ is even inθ , the coefficients ofφn are real [1]. It is also proved in [1] thatφn

satisfy the recursion formulae

κn−1zφn−1(z) = κnφn(z)− φn(0) φ∗n(z) (2.2)

κnφn+1(z) = κn+1zφn(z) + φn+1(0) φ
∗
n(z). (2.3)

Here the ‘*’ is defined as

φ∗n(z) = an + an−1z + · · · + a0 z
n (2.4)

if φn(z) = anz
n + an−1z

n−1 + · · · + a0. Notice that forφn(z), the coefficients are real as
mentioned above.

Since we are interested in the leading coefficientκn, we setφn(z) = κn pn(z), and for
simplicity we denotes = √λ. Then (2.1) becomes∫ π

−π
pn(e

iθ ) pm(eiθ )f (eiθ )
dθ

2π
= δnm 1

κ2
n

m, n > 0. (2.5)

If we eliminateφ∗n(z) in (2.2) and (2.3), we obtain

z

(
κn+1

κn
φn(z)− φn+1(0)

φn(0)

κn−1

κn
φn−1(z)

)
= φn+1(z)− φn+1(0)

φn(0)
φn(z). (2.6)

By φn(z) = κn pn(z), equation (2.6) becomes

z

(
pn(z)− pn+1(0)

pn(0)

κ2
n−1

κ2
n

pn−1(z)

)
= pn+1(z)− pn+1(0)

pn(0)
pn(z). (2.7)

For usage in later discussions, let us record this as a lemma, which is due to Szegö [1].

Lemma 1. The orthogonal polynomialspn(z) defined by (2.5) on the unit circle in the complex
plane satisfy the following recursion formulan = 1, 2, . . .:

z
(
pn(z) +Cnpn−1(z)

) = pn+1(z) +Bnpn(z) (2.8)

where

Cn = −pn+1(0)

pn(0)

κ2
n−1

κ2
n

(2.9)

Bn = −pn+1(0)

pn(0)
. (2.10)

As a remark, the recursion formula for the orthogonal polynomials on the real line takes the
form [1, 11]

zpn = anpn+1 + bnpn + cnpn−1. (2.11)

However, we have seen that on the unit circle with the weight dµ = f (z) dz/z, the coefficient
of pn−1 in the recursion formula containsz.
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3. Spatially discrete equation forκn(s)

In this section, we use the orthogonal relation (2.5) and the recursion relation (2.8) to show
thatκn(s) satisfies a spatially discrete equation (difference-differential equation). In the next
section we show that the continuous limit of this spatially discrete equation gives a third-order
ordinary differential equation, which is equivalent to the Painlevé II equation.

Let us write (2.5) in the form

〈pn, pm〉 ≡
∮
pn(z) pm(z)f (z)

dz

z
= δnm hn m, n > 0 (3.1)

wherehn = 2π i/κ2
n , and the integral

∮
is taken over the unit circle oriented anticlockwise in

the complex plane. We will use the notation dµ = f (z) dz/z for simplicity. First it is easy to
show the following identities:∮

zk
∂pm(z)

∂z̄
pn(z) dµ =

∮
z−k

∂pm(z)

∂z
pn(z) dµ (3.2)∮

zk pm(z) pn(z) dµ =
∮
z−k pm(z) pn(z) dµ (3.3)

by usingz = eiθ , andθ replaced by−θ . Recallpn(z) = pn(z̄).
Now, consider (3.1) withm = n,

hn =
∮
pn(e

iθ ) pn(eiθ ) es(z+1/z) dz

z

= 1

s

∮
pn(e

iθ ) pn(eiθ ) es(1/z)
1

z
d(esz).

Then by integration by parts and using (3.2) and (3.3), we have

hn = 1

s

∮
z2 ∂pn(z)

∂z
pn(z) dµ +

∮
z2pn(z)pn(z) dµ +

1

s

∮
zpn(z)pn(z) dµ. (3.4)

As a remark for the calculation of this formula, the term wherepn(z) is differentiated leads to
an extra term like the first one in (3.4) withz2 replaced by−1. It can be omitted due to the
orthogonality.

Sincepn(z) = p(z̄) = p(1/z) on the unit circle, by the Cauchy integral formula, the right-
hand side of the above equation can be calculated, and the result involves all the coefficients
of pn(z). This does not particularly help the investigation ofκn. Here, by using the recursion
formula and the orthonormal property, the right side of (3.4) can be expressed in terms of
hn−1, hn, hn+1 and their first derivatives.

We need to consider two types of integrals,∮
zk
∂

∂z
pn(z) pn(z) dµ

∮
zk pn(z) pn(z) dµ

for (3.4), wherek is integer. In this paper, we do not discuss the general formula. We just
consider the integrals in (3.4), and the formulae are given in the following lemmas.

Lemma 2. ∮
z pn(z) pn(z) dµ = (Bn − Cn) hn (3.5)

n = 1, 2, . . . .
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Proof. Multiply pn(z) on both sides of (2.8). Then integrating on both sides yields the result.
�

Lemma 3.∮
z2pn(z)pn(z) dµ = −(Cn+1(Bn − Cn)− (Bn − Cn)2 +Cn(Bn−1− Cn−1)) hn (3.6)

n = 1, 2, . . . .

Proof. Let I = ∮ z2pn(z) pn(z) dµ. By lemma 1, we have

z2pn = pn+2 +Bn+1pn+1− Cn+1zpn +Bnzpn − Cnz2pn−1

which implies by (3.1)

I =
∮ (
(−Cn+1 +Bn) zpn − Cnz2pn−1

)
pn(z) dµ. (3.7)

Again by lemma 1,

z2pn−1 = zpn +Bn−1pn +B2
n−1pn−1− zBn−1Cn−1pn−2 − Cn−1z

2pn−2.

Since〈pn−1, pn〉 = 〈z pn−2, pn〉 = 0, we then obtain from (3.7)

I =
∮ {

(−Cn+1 +Bn)zpn − Cn(zpn +Bn−1pn − Cn−1z
2pn−2)

}
pn dµ

=
∮ {

(−Cn+1 +Bn − Cn)(pn+1 +Bnpn − zCnpn−1)

−CnBn−1pn +CnCn−1z
2pn−2

}
pn dµ

= (−Cn+1 +Bn − Cn)(Bn − Cn)hn − CnBn−1hn +CnCn−1hn

where〈zpn−1, pn〉 = 〈z2pn−2, pn〉 = hn. �
In order to evaluate the integral〈z2 ∂pn/∂z, pn〉 in (3.4), we need to consider the second

leading coefficient ofpn(z). Suppose

pn(z) = zn + bn−1z
n−1 + · · · . (3.8)

Becausez2∂pn(z)/∂z = nzn+1 + (n− 1)bn−1z
n + · · · , we set

z2∂pn(z)

∂z
= n(pn+1 +µnpn + · · ·).

Then by

zn+1 + bnz
n + · · · +µn(zn + bn−1z

n−1 + · · ·) = zn+1 +

(
1− 1

n

)
bn−1z

n + · · ·

it follows that

µn =
(

1− 1

n

)
bn−1− bn. (3.9)

Since〈z2∂pn/∂z, pn〉 = nµnhn, we have proved the following lemma.

Lemma 4. ∮
z2∂pn(z)

∂z
pn(z) dµ = (n(bn−1− bn)− bn−1)hn. (3.10)
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Because we want an equation for the leading coefficientκn, we need to express the second
leading coefficientbn in terms ofκn. First, thebn can be expressed in terms ofBn andCn.

Lemma 5. For the second leading coefficientbn−1 (n = 1, 2, . . .) ofpn defined by (3.8), there
are the following properties:

(a) bn−1− bn = Bn − Cn (3.11)

(b)
1

s
bn−1 = −Cn(Bn−1− Cn−1)− hn

hn−1
. (3.12)

Proof. By lemma 1, zpn(z) = pn+1(z) + Bnpn(z) − Cnzpn−1(z). By (3.8), zpn =
pn+1 + (bn−1 − bn)pn + · · ·. Then we have(bn−1 − bn)hn = Bnhn − Cnhn by considering
〈zpn, pn〉 in the two ways.

To prove the second formula (3.12), consider

J =
∮
pn+1(z)pn(z) es(z+(1/z))dz. (3.13)

Using integration by parts,

J = 1

s

∮
pn+1(z)pn(z) es/z desz

= −1

s

∮ (
z
∂pn+1

∂z

)
pn dµ +

1

s

∮
pn+1

(
z̄
∂pn

∂z̄

)
dµ +

∮
pn+1(z̄pn) dµ

where 〈pn+1, z∂pn/∂z〉 = 0, and 〈pn+1, zpn〉 = hn+1. And z∂pn+1/∂z = (n + 1)(zn+1

+ n/(n + 1)bnzn + · · ·). Set z∂pn+1/∂z = (n + 1)(pn+1 + γnpn + · · ·), which implies
〈z∂pn+1/∂z, pn〉 = (n + 1)γnhn. Then by

pn+1 + γnpn + · · · = zn+1 +
n

n + 1
bnz

n + · · ·
we obtainγn + bn = [n/(n + 1)]bn, soγn = −(n + 1)−1bn. Thus

J = 1

s
bnhn + hn+1. (3.14)

On the other hand, the integralJ can be evaluated by using the recursion formula (2.8)

zpn+1 = pn+2 +Bn+1pn+1− Cn+1pn+1− Cn+1Bnpn +Cn+1Cnzpn−1

which gives

J = 〈zpn+1, pn〉 = −Cn+1(Bn − Cn)hn. (3.15)

By (3.14) and (3.15), we obtain (3.12). �
We have seen by the last four lemmas that the right-hand side of (3.4) can be expressed in

terms ofBn andCn. The following lemma gives the formulae ofBn,Cn in terms ofκn.

Lemma 6. The coefficientsBn,Cn in the recursion formula (see (2.9) and (2.10)) can be
expressed as follows:

(a) Bn − Cn = − (κ
2
n)s

2κ2
n

(3.16)

(b) Bn = − (κ2
n)s

2(κ2
n − κ2

n−1)
(3.17)

(c) Cn = −
κ2
n−1

2κ2
n

(κ2
n)s

κ2
n − κ2

n−1

(3.18)

whereκn is the leading coefficient ofφn defined by (1.1), and(κ2
n)s = dκ2

n(s)/ds.
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Proof. Sincehn = 〈pn, pn〉, we have

dhn(s)

ds
=
∮
pn(z)pn(z)

(
z +

1

z

)
dµ = 2

∮
zpnpndµ (3.19)

where we have used〈∂pn/∂s, pn〉 = 〈pn, ∂pn/∂s〉 = 0, since deg(∂pn/∂s) 6 n − 1,
deg(∂pn/∂s) 6 n − 1. Then by lemma 1 and the notationhn = 2π i/κ2

n , we have the
first formula (3.16). By (2.9) and (2.10)Cn = Bnκ

2
n−1/κ

2
n . We then obtain (3.17) and

(3.18). �

By lemmas 2–4, equation (3.4) is changed to

1= n

s
(bn−1− bn)− 1

s
bn−1− Cn+1(Bn − Cn) + (Bn − Cn)2

− Cn(Bn−1− Cn−1) +
1

s
(Bn − Cn). (3.20)

By lemma 5, this equation further becomes

n + 1

s
(Bn − Cn) +

hn

hn−1
− 1− Cn+1(Bn − Cn) + (Bn − Cn)2 = 0. (3.21)

Therefore, by lemma 6, we have proved the following theorem.

Theorem 1. The leading coefficientκn(s) of the orthonormal polynomialsφn(z; s) defined by
(1.1) satisfies the following spatially discrete equation (difference-differential equation):

n + 1

2s

(κ2
n)s

κ2
n

− κ
2
n−1− κ2

n

κ2
n

+
1

4

(κ2
n+1)s

κ2
n+1

(κ2
n)s

κ2
n+1− κ2

n

− 1

4

(
(κ2
n)s

κ2
n

)2

= 0 (3.22)

wheres = √λ, and(κ2
n)s = d/ds(κ2

n).

This seems to be a new result forκn(s), the leading coefficients of the orthonormal polynomials
φn(z; s), with the weight exp

(
s(z+ 1/z)

)
dz/z on the unit circle. In the next section, we show

that asn, s → ∞ and 2s/(n + 1) → 1, this equation is reduced to a third-order ordinary
differential equation which is equivalent to the Painlevé II equation.

4. Painlev́e II equation

We have shown thatκ2
n satisfies equation (3.22). As mentioned in section 1,κ2

n satisfies the
boundary conditionκ2

n(s) = 1 + o(1), asn → ∞ for all s. In this section, we compute the
asymptotics ofκ2

n − 1, asn, s → ∞. We will see that the asymptotics involves the second
Painlev́e function.

Equation (3.22) has two independent variablesn and s. To study the asymptotics, we
use ‘similarity’ reduction, or the so-called double-scaling method. By comparing the first two
terms in (3.22), we consider the case whenn + 1 ands are of the same order as they are large,
and let

c3s

n + 1
= 1 +

c2t (n, s)

(n + 1)β
(4.1)

κ2
n = 1 +

c1

(n + 1)α
R(T (n, s)) (4.2)

where we assumeT (n, s) = t (n, s) + ε(n, s), the leading termt (n, s) is defined by (4.1),
ε(n, s) is a smaller term asn, s →∞, andα, β will be discussed later. We want to determine



7214 C B Wang

the constantsα, β, c1, c2, c3, such that asn, s →∞, the difference-differential equation (3.22)
is reduced to an ordinary differential equation ofR(t).

Let us consider the approximate expressions of(κ2
n)s , κ

2
n+1−κ2

n and(κ2
n+1)s−(κ2

n)s in terms
of R′ and the higher-order derivatives. HereR′ means the limit of(R(T +1T )−R(T ))/1T .
The primary part of1T is1t , and it can be calculated that asn, s →∞, andc3s/(n+1)→ 1,
we have

t (n + 1, s)− t (n, s) = − β

c2(n + 1)1−β
+
c3s

n + 1

−1 +β

c2(n + 1)1−β
+ O

(
1

(n + 1)2−β

)
= − 1

c2(n + 1)1−β
+ O

(
1

n + 1

)
.

We see thatβ should be chosen such that 0< β < 1, and then the rest term is O(1/(n + 1)).
For the asymptotics ofκ2

n+1−κ2
n and(κ2

n+1)s−(κ2
n)s , the higher-order terms must be considered

in order to have all the terms in the first three leading orders in the expansion of left-hand side
of (3.22). Therefore, we have the following:

t (n + 1, s)− t (n, s) = c4

(n + 1)1−β
+ · · ·

κ2
n+1− κ2

n = R′
c5

(n + 1)1+α−β +R′′
c6

(n + 1)2+α−2β
+R′′′

c7

(n + 1)3+α−3β
+R

c8

(n + 1)1+α
+ · · ·

κ2
n−1− κ2

n = −R′
c5

(n + 1)1+α−β +R′′
c6

(n + 1)2+α−2β

−R′′′ c7

(n + 1)3+α−3β
− R c8

(n + 1)1+α
+ · · ·

(κ2
n)s =

c1c3

c2
R′

1

(n + 1)1+α−β + · · ·

(κ2
n+1)s − (κ2

n)s =
c1c3

c2(n + 1)1+α−β

(
R′′

c4

(n + 1)1−β
+
R′′′

2

c2
4

(n + 1)2−2β

)
+ · · ·

where

c4 = − 1

c2
c5 = c1c4 c6 = 1

2
c1c

2
4 (4.3)

c7 = 1
6c1c

3
4 c8 = −c1α. (4.4)

Now write (3.22) in the following form:

n + 1

2s
(κ2
n)s(κ

2
n+1− κ2

n)− (κ2
n−1− κ2

n)(κ
2
n+1− κ2

n) +
1

4
(κ2
n)s(κ

2
n+1)s

−1

4

κ2
n+1− κ2

n

κ2
n+1

(κ2
n)s(κ

2
n+1)s −

1

4

((κ2
n)s)

2

κ2
n

(κ2
n+1− κ2

n) = 0.

By substituting the asymptotic formulae above into this equation, we obtain

S1 + S2 + S3 + S4 + o(1) = 0 (4.5)

where

S1 = c1c
2
3

2c2

(
1− c2t

(n + 1)β

)
R′

(n + 1)1+α−β

×
{

c5R
′

(n + 1)1+α−β +
c6R

′′

(n + 1)2+α−2β
+

c7R
′′′

(n + 1)3+α−3β
+

c8R

(n + 1)1+α

}
S2 = c2

5(R
′)2

(n + 1)2+2α−2β
+

2c5c7R
′R′′′

(n + 1)4+2α−4β
+

2c5c8R
′R

(n + 1)2+2α−β −
c2

6(R
′′)2

(n + 1)4+2α−4β
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S3 = c1c3

4c2

R′

(n + 1)1+α−β

{
c1c3

c2

R′

(n + 1)1+α−β +
c1c3

c2(n + 1)1+α−β

(
c4R

′′

(n + 1)1−β
+

c2
4R
′′′

2(n + 1)2−2β

)}
S4 = − c5

4κ2
n+1

(
c1c3

c2

)2
(R′)3

(n + 1)3+3α−3β
− c5

4κ2
n

(
c1c3

c2

)2
(R′)3

(n + 1)3+3α−3β
.

We have seen that 0< β < 1. Forα, sinceκ2
n(s) → 1, asn → ∞ for all s, we have

α > 0. Consider the orders of the terms on the left-hand side of (4.5). The coefficients of
(R′)2, R′R′′, R′R′′′, (R′′)2 have orders 2(1+α−β), 2(1+α−β)+(1−β), 2(1+α−β)+2(1−β),
2(1 + α − β) + 2(1 − β), respectively. The coefficients oft (R′)2, RR′, (R′)3 have orders
2(1 +α − β) + β, 2(1 +α − β) + β, 2(1 +α − β) + (1 +α − β), respectively. And the o(1) in
(4.5) contains higher-order terms which do not concern us. To determine the values ofα and
β, the only choice is to set the coefficients ofR′R′′′, (R′′)2, t (R′)2, RR′ and(R′)3 to be of the
same order. So we have 2(1− β) = β = 1 +α− β. The solution is uniqueα = 1

3, β = 2
3. So

(4.5) becomes

A1
(R′)2

(n + 1)4/3
+A2

R′R′′

(n + 1)5/3

+
(
A3R

′R +A4R
′R′′′ +A5(R

′′)2 +A6t (R
′)2 +A7(R

′)3
) 1

(n + 1)2

+O

(
1

(n + 1)7/3

)
= 0 (4.6)

where

A1 = c3

2

c1c3

c2
c5 + c2

5 +
1

4

(
c1c3

c2

)2

A2 = c3

2

c1c3

c2
c6 +

1

4

(
c1c3

c2

)2

c4

A3 = c3

2

c1c3

c2
c8 + 2c5c8

A4 = c3

2

c1c3

c2
c7 + 2c5c7 +

1

8

(
c1c3

c2

)2

c2
4

A5 = −c2
6

A6 = − 1
2c1c

2
3c5

A7 = −1

2

(
c1c3

c2

)2

c5.

TheAjs (j = 1, 2, . . . ,7) can be expressed in terms ofc1, c2, c3 by using (4.3) and (4.4), and
it is seen thatA2 = 0.

Look at equation (4.6). Asn→∞, the leading term gives an equation(1−c2
3/4)(R

′)2 =
0. If we choosec2

3 6= 4, thenR′ = 0, which impliesκ2
n(s) = 1 + constant/(n + 1)1/3 + · · ·,

asn, s → ∞, c3 s/(n + 1) → 1. If we choosec2
3 = 4, thenA1 = A3 = 0, and asn → ∞,

equation (4.6) is reduced to

A4R
′R′′′ +A5 (R

′′)2 +A6 t (R
′)2 +A7 (R

′)3 = 0. (4.7)

In [2], Tracy and Widom discussed two forms of the Painlevé II equation

1

2

R′′′

R′
− 1

2

(R′′)2

(R′)2
− R

R′
+R′ = 0 (4.8)

(R′′)2 + 4R′((R′)2 − tR′ +R) = 0 (4.9)
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whereR′(t) = −q(t)2, andq(t) satisfies the original Painlevé II q ′′ = tq+2q3. Equation (4.9)
is called the Jimbo–Miwa–Okamotoσ -form for Painlev́e II. EliminatingR in (4.8) and (4.9)
gives another form,

−2R′R′′′ + (R′′)2 + 4t (R′)2 − 8(R′)3 = 0. (4.10)

In (4.7), it can be calculated thatA4 = −2A5 sincec2
3 = 4. LetA6 = 4A5 andA7 = −8A5.

These two equations can be written as algebraic equations ofc1, c2 by using (4.3) and (4.4),
and the solution is

c1 = −21/3 (4.11)

c2 = − 1

21/3
. (4.12)

For thec3, since we consider positiven ands, c3 is positive, i.e.c3 = 2. That implies that
if we choosec1 = −21/3, c2 = −1/21/3, c3 = 2 in (4.1) and (4.2), the spatially discrete
equation (3.22) in theorem 1 is reduced to the Painlevé II equation (4.10). That is why we call
(3.22) a spatially discrete Painlevé II equation. And it is seen thatε(n, s) = O(1/(n + 1)1/3)
because the last term in (4.6) is1

3 order higher than the preceding term.
Therefore, we have a formal proof of the following theorem which was first proved by

Baik et al [3] by studying the corresponding Riemann–Hilbert problem.

Theorem 2. As n,
√
λ → ∞, and 2

√
λ/(n + 1) → 1, κ2

n(λ) has the following asymptotic
formula:

κ2
n(λ) = 1− 21/3

(n + 1)1/3
R(t) + O

(
1

(n + 1)2/3

)
(4.13)

wheret is defined by2
√
λ/(n + 1) = 1− t/[21/3(n + 1)2/3],R′(t) = −q2(t), andq(t) satisfies

Painlev́e II q ′′ = tq + 2q3.

As discussed in [3], the Painlevé II function q(t) in theorem 2 satisfies the boundary
condition q(t) ∼ −Ai (t), as t → ∞, where Ai(t) is the Airy function. This boundary
condition can also be obtained by the asymptotics ofκn in terms of an exponential function
[1] and the Painlev́e II equation thatq(t) satisfies. The Painlevé II function q(t) with this
boundary condition is discussed by Hastings and McLeod in [12].

Finally, by lemmas 5 and 6 and theorem 2, we obtain the asymptotics for the second
leading coefficient ofφn(z).

Theorem 3. For the polynomialφn(z; λ) = κn(λ) (zn + bn−1(λ) z
n−1 + · · ·) defined by (1.1),

the second leading coefficientκn(λ) bn−1(λ) has the asymptotic formula

κn(λ) bn−1(λ)√
λ

= −1 +
1

22/3(n + 1)1/3
R(t) + O

(
1

(n + 1)2/3

)
(4.14)

asn,
√
λ→∞, and2

√
λ/(n + 1)→ 1, wheret andR(t) are the same as in theorem 2.
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