Orthonormal polynomials on the unit circle and spatially discrete Painlevéll equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 327207
(http://iopscience.iop.org/0305-4470/32/41/312)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.111
The article was downloaded on 02/06/2010 at 07:47

Please note that terms and conditions apply.

Orthonormal polynomials on the unit circle and spatially discrete Painlevé II equation

Chie Bing Wang

Department of Mathematics and Institute of Theoretical Dynamics University of California, Davis, CA 95616, USA
E-mail: wang@itd.ucdavis.edu

Received 18 February 1999, in final form 28 June 1999

Abstract

We consider the polynomials $\phi_{n}(z)=\kappa_{n}\left(z^{n}+b_{n-1} z^{n-1}+\cdots\right)$ orthonormal with respect to the weight $\exp (\sqrt{\lambda}(z+1 / z)) \mathrm{d} z / 2 \pi \mathrm{i} z$ on the unit circle in the complex plane. The leading coefficient κ_{n} is found to satisfy a difference-differential (spatially discrete) equation which is further proved to approach a third-order differential equation by double scaling. The third-order differential equation is equivalent to the Painlevé II equation. The leading coefficient and second leading coefficient of $\phi_{n}(z)$ can be expressed asymptotically in terms of the Painlevé II function.

1. Introduction

In this paper, we discuss the orthonormal polynomials with respect to the weight $\exp (\sqrt{\lambda}(z+$ $1 / z)) \mathrm{d} z / 2 \pi \mathrm{i} z$ on the unit circle in the complex plane [1],

$$
\begin{equation*}
\oint \phi_{n}(z) \overline{\phi_{m}(z)} \mathrm{e}^{\sqrt{\lambda}(z+1 / z)} \frac{\mathrm{d} z}{2 \pi \mathrm{i} z}=\delta_{n m} \quad m, n \geqslant 0 \tag{1.1}
\end{equation*}
$$

where the integral is over the unit circle, and $\overline{\phi_{m}(z)}$ means the complex conjugate of $\phi_{m}(z), \lambda$ is a positive parameter. The polynomials $\phi_{n}(z)=\kappa_{n} z^{n}+\cdots$ have an explicit representation in terms of the Toeplitz determinants $D_{n}(\lambda)=D_{n}(\exp (2 \sqrt{\lambda} \cos \theta))$ [1]. Here we are interested in analysing the properties of the leading coefficient $\kappa_{n}(\lambda)$. As discussed in [1], κ_{n}^{2} can be expressed in terms of the Toeplitz determinants,

$$
\begin{equation*}
\kappa_{n}^{2}=\frac{D_{n-1}(\lambda)}{D_{n}(\lambda)} \tag{1.2}
\end{equation*}
$$

and $\kappa_{n}^{2}(\lambda) \rightarrow 1$, as $n \rightarrow \infty$ for any λ (see (12.3.19) and (10.2.4) in [1]).
From the orthonormal property and the recursion formula of the $\phi_{n} \mathrm{~s}$, we show that κ_{n} satisfies the following difference-differential equation

$$
\begin{equation*}
\frac{n+1}{2 s} \frac{\left(\kappa_{n}^{2}\right)_{s}}{\kappa_{n}^{2}}-\frac{\kappa_{n-1}^{2}-\kappa_{n}^{2}}{\kappa_{n}^{2}}+\frac{1}{4} \frac{\left(\kappa_{n+1}^{2}\right)_{s}}{\kappa_{n+1}^{2}} \frac{\left(\kappa_{n}^{2}\right)_{s}}{\kappa_{n+1}^{2}-\kappa_{n}^{2}}-\frac{1}{4}\left(\frac{\left(\kappa_{n}^{2}\right)_{s}}{\kappa_{n}^{2}}\right)^{2}=0 \tag{1.3}
\end{equation*}
$$

where $s=\sqrt{\lambda}$, and $\left(\kappa_{n}^{2}\right)_{s}=(\mathrm{d} / \mathrm{d} s)\left(\kappa_{n}^{2}\right)$. If we make the ansatz

$$
\begin{equation*}
\kappa_{n}^{2}(s)=1+\frac{c_{1}}{(n+1)^{\alpha}} R(T(n, s)) \tag{1.4}
\end{equation*}
$$

with $T(n, s)=t(n, s)+\epsilon(n, s)$, and

$$
\begin{equation*}
t(n, s)=\frac{(n+1)^{\beta}}{c_{2}}\left(\frac{c_{3} s}{n+1}-1\right) \tag{1.5}
\end{equation*}
$$

then we obtain, as $n, s \rightarrow \infty$, and $c_{3} s /(n+1) \rightarrow 1$, if we choose $c_{3}^{2}=4$, the other parameters then satisfy $\alpha=\frac{1}{3}, \beta=\frac{2}{3}, c_{1}=-2^{1 / 3}, c_{2}=-1 / 2^{1 / 3}, \epsilon(n, s)=\mathrm{O}\left(1 /(n+1)^{1 / 3}\right)$, and the function $R(t)$ satisfies

$$
\begin{equation*}
\left(R^{\prime \prime}\right)^{2}-8\left(R^{\prime}\right)^{3}+4 t\left(R^{\prime}\right)^{2}-2 R^{\prime} R^{\prime \prime \prime}+\mathrm{o}(1)=0 . \tag{1.6}
\end{equation*}
$$

If we drop the o(1) term, this equation is another form of the Painlevé II equation discussed by Tracy and Widom in [2]. Since equation (1.3) contains a continuous independent variable s, and a discrete independent variable n, let us call (1.3) a spatially discrete Painlevé II equation to distinguish from the discrete Painlevé II equation [8] which has one discrete independent variable.

Therefore, we have another proof of the asymptotic formula

$$
\begin{equation*}
\kappa_{n}^{2}=1-\frac{2^{1 / 3}}{(n+1)^{1 / 3}} R(t)+\cdots \tag{1.7}
\end{equation*}
$$

where $R^{\prime}(t)=-q^{2}(t)$, and $q(t)$ satisfies the Painlevé II equation $q^{\prime \prime}=t q+2 q^{3}$. This asymptotic formula was first proved by Baik et al [3] by studying the corresponding RiemannHilbert problems. They discussed much more asymptotic properties for κ_{n} (see [3] for details). The asymptotic formula (1.7) is used for investigating the distribution of the length l_{n} of the longest increasing subsequence of a random permutation [3], by discussing the asymptotics of $D_{n-1}(\lambda)=\mathrm{e}^{\lambda} \prod_{k=n}^{\infty} \kappa_{k}^{2}$. The distribution of $l_{n}($ as $n \rightarrow \infty)$ is the same as the distribution of the largest eigenvalue of the Gaussian unitary ensemble (GUE) in random matrix theory [3-5]. In [5], Tracy and Widom used a different method to study the distribution of l_{n} by investigating the asymptotics of $D_{n}(\lambda)$ directly. They also obtained the distribution of the length of the longest increasing subsequence of an odd permutation [5].

In [6], Hisakado discussed the same polynomials as in this paper, and he also obtained the Painlevé II equation from a discrete equation which is called the discrete string equation in [6]. The difference is as follows. In [6], Hisakado discussed the fact that the constant term of the polynomial $\phi_{n}(z) / \kappa_{n}$ satisfies a discrete equation (discrete string equation). In this paper, we discuss κ_{n}, the coefficient of the leading term of $\phi_{n}(z)$, which satisfies a spatially discrete equation (difference-differential equation). And the discrete string equation in [6] is convergent to the original Painlevé II ($q^{\prime \prime}=x q+2 q^{3}$). In this paper, the spatially discrete equation is convergent to a third-order differential equation. As discussed by Tracy and Widom in [2], this third-order equation is equivalent to the Painlevé II equation.

It is known that the Painlevé equations have discrete analogues. See [7-10] and references therein for the discrete or q-difference Painlevé equations. In this paper, we show that the Painlevé II equation has a spatially discrete version. So far, to my knowledge, the spatially discrete versions for Painlevé equations are not known very well. In [7], Fokas et al discussed another spatially discrete integrable equation, which is obtained from orthonormal polynomials on the real line satisfying a recursion formula in the form (2.11). It is discussed in [7] that the simultaneous solution of the spatially discrete equation in [7] and of the discrete Painlevé I equation solves a special case of the Painlevé IV equation.

This paper is organized as follows. In the next section, we state the recursion formula for the orthonormal polynomials on the unit circle, which is proved in [1]. In section 3, we use the recursion formula and the orthonormal property of the polynomials to investigate the leading coefficient $\kappa_{n}(s)$, which is found to satisfy a difference-differential equation, or
spatially discrete equation. And we also obtain a formula for the second leading coefficient of $\phi_{n}(z)$ in terms of κ_{n} and κ_{n-1}. In section 4, the difference-differential equation is proved to tend to the second Painlevé equation in a third order equation form. Then we obtain the asymptotics of the coefficients for the leading term and for the second leading term of $\phi_{n}(z)$.

2. Recursion formula for the polynomials

Let us consider the orthonormal polynomials $\phi_{n}(n=0,1,2, \ldots)$ on the unit circle in the complex plane defined by (1.1). If we let $f\left(\mathrm{e}^{\mathrm{i} \theta}\right)=\exp (2 \sqrt{\lambda} \cos \theta)=\exp (\sqrt{\lambda}(z+1 / z))$, $z=\mathrm{e}^{\mathrm{i} \theta}$, then (1.1) becomes

$$
\begin{equation*}
\int_{-\pi}^{\pi} \phi_{n}\left(\mathrm{e}^{\mathrm{i} \theta}\right) \overline{\phi_{m}\left(\mathrm{e}^{\mathrm{i} \theta}\right)} f\left(\mathrm{e}^{\mathrm{i} \theta}\right) \frac{\mathrm{d} \theta}{2 \pi}=\delta_{n m} \quad m, n \geqslant 0 . \tag{2.1}
\end{equation*}
$$

Since $2 \sqrt{\lambda} \cos \theta$ is even in θ, the coefficients of ϕ_{n} are real [1]. It is also proved in [1] that ϕ_{n} satisfy the recursion formulae

$$
\begin{align*}
& \kappa_{n-1} z \phi_{n-1}(z)=\kappa_{n} \phi_{n}(z)-\phi_{n}(0) \phi_{n}^{*}(z) \tag{2.2}\\
& \kappa_{n} \phi_{n+1}(z)=\kappa_{n+1} z \phi_{n}(z)+\phi_{n+1}(0) \phi_{n}^{*}(z) . \tag{2.3}
\end{align*}
$$

Here the '*' is defined as

$$
\begin{equation*}
\phi_{n}^{*}(z)=\overline{a_{n}}+\overline{a_{n-1}} z+\cdots+\overline{a_{0}} z^{n} \tag{2.4}
\end{equation*}
$$

if $\phi_{n}(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$. Notice that for $\phi_{n}(z)$, the coefficients are real as mentioned above.

Since we are interested in the leading coefficient κ_{n}, we set $\phi_{n}(z)=\kappa_{n} p_{n}(z)$, and for simplicity we denote $s=\sqrt{\lambda}$. Then (2.1) becomes

$$
\begin{equation*}
\int_{-\pi}^{\pi} p_{n}\left(\mathrm{e}^{\mathrm{i} \theta}\right) \overline{p_{m}\left(\mathrm{e}^{\mathrm{i} \theta}\right)} f\left(\mathrm{e}^{\mathrm{i} \theta}\right) \frac{\mathrm{d} \theta}{2 \pi}=\delta_{n m} \frac{1}{\kappa_{n}^{2}} \quad m, n \geqslant 0 . \tag{2.5}
\end{equation*}
$$

If we eliminate $\phi_{n}^{*}(z)$ in (2.2) and (2.3), we obtain

$$
\begin{equation*}
z\left(\frac{\kappa_{n+1}}{\kappa_{n}} \phi_{n}(z)-\frac{\phi_{n+1}(0)}{\phi_{n}(0)} \frac{\kappa_{n-1}}{\kappa_{n}} \phi_{n-1}(z)\right)=\phi_{n+1}(z)-\frac{\phi_{n+1}(0)}{\phi_{n}(0)} \phi_{n}(z) . \tag{2.6}
\end{equation*}
$$

By $\phi_{n}(z)=\kappa_{n} p_{n}(z)$, equation (2.6) becomes

$$
\begin{equation*}
z\left(p_{n}(z)-\frac{p_{n+1}(0)}{p_{n}(0)} \frac{\kappa_{n-1}^{2}}{\kappa_{n}^{2}} p_{n-1}(z)\right)=p_{n+1}(z)-\frac{p_{n+1}(0)}{p_{n}(0)} p_{n}(z) . \tag{2.7}
\end{equation*}
$$

For usage in later discussions, let us record this as a lemma, which is due to Szegö [1].
Lemma 1. The orthogonal polynomials $p_{n}(z)$ defined by (2.5) on the unit circle in the complex plane satisfy the following recursion formula $n=1,2, \ldots$:

$$
\begin{equation*}
z\left(p_{n}(z)+C_{n} p_{n-1}(z)\right)=p_{n+1}(z)+B_{n} p_{n}(z) \tag{2.8}
\end{equation*}
$$

where

$$
\begin{align*}
C_{n} & =-\frac{p_{n+1}(0)}{p_{n}(0)} \frac{\kappa_{n-1}^{2}}{\kappa_{n}^{2}} \tag{2.9}\\
B_{n} & =-\frac{p_{n+1}(0)}{p_{n}(0)} \tag{2.10}
\end{align*}
$$

As a remark, the recursion formula for the orthogonal polynomials on the real line takes the form [1, 11]

$$
\begin{equation*}
z p_{n}=a_{n} p_{n+1}+b_{n} p_{n}+c_{n} p_{n-1} . \tag{2.11}
\end{equation*}
$$

However, we have seen that on the unit circle with the weight $\mathrm{d} \mu=f(z) \mathrm{d} z / z$, the coefficient of p_{n-1} in the recursion formula contains z.

3. Spatially discrete equation for $\kappa_{n}(s)$

In this section, we use the orthogonal relation (2.5) and the recursion relation (2.8) to show that $\kappa_{n}(s)$ satisfies a spatially discrete equation (difference-differential equation). In the next section we show that the continuous limit of this spatially discrete equation gives a third-order ordinary differential equation, which is equivalent to the Painlevé II equation.

Let us write (2.5) in the form

$$
\begin{equation*}
\left\langle p_{n}, p_{m}\right\rangle \equiv \oint p_{n}(z) \overline{p_{m}(z)} f(z) \frac{\mathrm{d} z}{z}=\delta_{n m} h_{n} \quad m, n \geqslant 0 \tag{3.1}
\end{equation*}
$$

where $h_{n}=2 \pi \mathrm{i} / \kappa_{n}^{2}$, and the integral \oint is taken over the unit circle oriented anticlockwise in the complex plane. We will use the notation $\mathrm{d} \mu=f(z) \mathrm{d} z / z$ for simplicity. First it is easy to show the following identities:

$$
\begin{align*}
& \oint z^{k} \frac{\partial \overline{p_{m}(z)}}{\partial \bar{z}} p_{n}(z) \mathrm{d} \mu=\oint z^{-k} \frac{\partial p_{m}(z)}{\partial z} \overline{p_{n}(z)} \mathrm{d} \mu \tag{3.2}\\
& \oint z^{k} \overline{p_{m}(z)} p_{n}(z) \mathrm{d} \mu=\oint z^{-k} p_{m}(z) \overline{p_{n}(z)} \mathrm{d} \mu \tag{3.3}
\end{align*}
$$

by using $z=\mathrm{e}^{\mathrm{i} \theta}$, and θ replaced by $-\theta$. Recall $\overline{p_{n}(z)}=p_{n}(\bar{z})$.
Now, consider (3.1) with $m=n$,

$$
\begin{aligned}
h_{n} & =\oint p_{n}\left(\mathrm{e}^{\mathrm{i} \theta}\right) \overline{p_{n}\left(\mathrm{e}^{\mathrm{i} \theta}\right)} \mathrm{e}^{s(z+1 / z)} \frac{\mathrm{d} z}{z} \\
& =\frac{1}{s} \oint p_{n}\left(\mathrm{e}^{\mathrm{i} \theta}\right) \overline{p_{n}\left(\mathrm{e}^{\mathrm{i} \theta}\right)} \mathrm{e}^{s(1 / z)} \frac{1}{z} \mathrm{~d}\left(\mathrm{e}^{s z}\right) .
\end{aligned}
$$

Then by integration by parts and using (3.2) and (3.3), we have
$h_{n}=\frac{1}{s} \oint z^{2} \frac{\partial p_{n}(z)}{\partial z} \overline{p_{n}(z)} \mathrm{d} \mu+\oint z^{2} p_{n}(z) \overline{p_{n}(z)} \mathrm{d} \mu+\frac{1}{s} \oint z p_{n}(z) \overline{p_{n}(z)} \mathrm{d} \mu$.
As a remark for the calculation of this formula, the term where $p_{n}(z)$ is differentiated leads to an extra term like the first one in (3.4) with z^{2} replaced by -1 . It can be omitted due to the orthogonality.

Since $\overline{p_{n}(z)}=p(\bar{z})=p(1 / z)$ on the unit circle, by the Cauchy integral formula, the righthand side of the above equation can be calculated, and the result involves all the coefficients of $p_{n}(z)$. This does not particularly help the investigation of κ_{n}. Here, by using the recursion formula and the orthonormal property, the right side of (3.4) can be expressed in terms of h_{n-1}, h_{n}, h_{n+1} and their first derivatives.

We need to consider two types of integrals,

$$
\oint z^{k} \frac{\partial}{\partial z} p_{n}(z) \overline{p_{n}(z)} \mathrm{d} \mu \quad \oint z^{k} p_{n}(z) \overline{p_{n}(z)} \mathrm{d} \mu
$$

for (3.4), where k is integer. In this paper, we do not discuss the general formula. We just consider the integrals in (3.4), and the formulae are given in the following lemmas.

Lemma 2.

$$
\begin{equation*}
\oint z p_{n}(z) \overline{p_{n}(z)} \mathrm{d} \mu=\left(B_{n}-C_{n}\right) h_{n} \tag{3.5}
\end{equation*}
$$

$n=1,2, \ldots$.

Proof. Multiply $\overline{p_{n}(z)}$ on both sides of (2.8). Then integrating on both sides yields the result.

Lemma 3.

$\oint z^{2} p_{n}(z) \overline{p_{n}(z)} \mathrm{d} \mu=-\left(C_{n+1}\left(B_{n}-C_{n}\right)-\left(B_{n}-C_{n}\right)^{2}+C_{n}\left(B_{n-1}-C_{n-1}\right)\right) h_{n}$
$n=1,2, \ldots$.
Proof. Let $I=\oint z^{2} p_{n}(z) \overline{p_{n}(z)} \mathrm{d} \mu$. By lemma 1, we have

$$
z^{2} p_{n}=p_{n+2}+B_{n+1} p_{n+1}-C_{n+1} z p_{n}+B_{n} z p_{n}-C_{n} z^{2} p_{n-1}
$$

which implies by (3.1)

$$
\begin{equation*}
I=\oint\left(\left(-C_{n+1}+B_{n}\right) z p_{n}-C_{n} z^{2} p_{n-1}\right) \overline{p_{n}(z)} \mathrm{d} \mu \tag{3.7}
\end{equation*}
$$

Again by lemma 1,

$$
z^{2} p_{n-1}=z p_{n}+B_{n-1} p_{n}+B_{n-1}^{2} p_{n-1}-z B_{n-1} C_{n-1} p_{n-2}-C_{n-1} z^{2} p_{n-2} .
$$

Since $\left\langle p_{n-1}, p_{n}\right\rangle=\left\langle z p_{n-2}, p_{n}\right\rangle=0$, we then obtain from (3.7)

$$
\begin{aligned}
I= & \oint\left\{\left(-C_{n+1}+B_{n}\right) z p_{n}-C_{n}\left(z p_{n}+B_{n-1} p_{n}-C_{n-1} z^{2} p_{n-2}\right)\right\} \overline{p_{n}} \mathrm{~d} \mu \\
= & \oint\left\{\left(-C_{n+1}+B_{n}-C_{n}\right)\left(p_{n+1}+B_{n} p_{n}-z C_{n} p_{n-1}\right)\right. \\
& \left.-C_{n} B_{n-1} p_{n}+C_{n} C_{n-1} z^{2} p_{n-2}\right\} \overline{p_{n}} \mathrm{~d} \mu \\
= & \left(-C_{n+1}+B_{n}-C_{n}\right)\left(B_{n}-C_{n}\right) h_{n}-C_{n} B_{n-1} h_{n}+C_{n} C_{n-1} h_{n}
\end{aligned}
$$

where $\left\langle z p_{n-1}, p_{n}\right\rangle=\left\langle z^{2} p_{n-2}, p_{n}\right\rangle=h_{n}$.
In order to evaluate the integral $\left\langle z^{2} \partial p_{n} / \partial z, p_{n}\right\rangle$ in (3.4), we need to consider the second leading coefficient of $p_{n}(z)$. Suppose

$$
\begin{equation*}
p_{n}(z)=z^{n}+b_{n-1} z^{n-1}+\cdots . \tag{3.8}
\end{equation*}
$$

Because $z^{2} \partial p_{n}(z) / \partial z=n z^{n+1}+(n-1) b_{n-1} z^{n}+\cdots$, we set

$$
z^{2} \frac{\partial p_{n}(z)}{\partial z}=n\left(p_{n+1}+\mu_{n} p_{n}+\cdots\right) .
$$

Then by

$$
z^{n+1}+b_{n} z^{n}+\cdots+\mu_{n}\left(z^{n}+b_{n-1} z^{n-1}+\cdots\right)=z^{n+1}+\left(1-\frac{1}{n}\right) b_{n-1} z^{n}+\cdots
$$

it follows that

$$
\begin{equation*}
\mu_{n}=\left(1-\frac{1}{n}\right) b_{n-1}-b_{n} \tag{3.9}
\end{equation*}
$$

Since $\left\langle z^{2} \partial p_{n} / \partial z, p_{n}\right\rangle=n \mu_{n} h_{n}$, we have proved the following lemma.

Lemma 4.

$$
\begin{equation*}
\oint z^{2} \frac{\partial p_{n}(z)}{\partial z} \overline{p_{n}(z)} \mathrm{d} \mu=\left(n\left(b_{n-1}-b_{n}\right)-b_{n-1}\right) h_{n} . \tag{3.10}
\end{equation*}
$$

Because we want an equation for the leading coefficient κ_{n}, we need to express the second leading coefficient b_{n} in terms of κ_{n}. First, the b_{n} can be expressed in terms of B_{n} and C_{n}.
Lemma 5. For the second leading coefficient $b_{n-1}(n=1,2, \ldots)$ of p_{n} defined by (3.8), there are the following properties:
(a)
(b)
$\frac{b_{n-1}}{s} b_{n-1}=b_{n}=B_{n}-C_{n}\left(B_{n-1}-C_{n-1}\right)-\frac{h_{n}}{h_{n-1}}$.

Proof. By lemma 1, $z p_{n}(z)=p_{n+1}(z)+B_{n} p_{n}(z)-C_{n} z p_{n-1}(z)$. By (3.8), $z p_{n}=$ $p_{n+1}+\left(b_{n-1}-b_{n}\right) p_{n}+\cdots$. Then we have $\left(b_{n-1}-b_{n}\right) h_{n}=B_{n} h_{n}-C_{n} h_{n}$ by considering $\left\langle z p_{n}, p_{n}\right\rangle$ in the two ways.

To prove the second formula (3.12), consider

$$
\begin{equation*}
J=\oint p_{n+1}(z) \overline{p_{n}(z)} \mathrm{e}^{s(z+(1 / z))} \mathrm{d} z \tag{3.13}
\end{equation*}
$$

Using integration by parts,

$$
\begin{aligned}
J & =\frac{1}{s} \oint p_{n+1}(z) \overline{p_{n}(z)} \mathrm{e}^{s / z} \mathrm{de}^{s z} \\
& =\frac{-1}{s} \oint\left(z \frac{\partial p_{n+1}}{\partial z}\right) \overline{p_{n}} \mathrm{~d} \mu+\frac{1}{s} \oint p_{n+1}\left(\bar{z} \frac{\partial \overline{p_{n}}}{\partial \bar{z}}\right) \mathrm{d} \mu+\oint p_{n+1}\left(\bar{z} \overline{p_{n}}\right) \mathrm{d} \mu
\end{aligned}
$$

where $\left\langle p_{n+1}, z \partial p_{n} / \partial z\right\rangle=0$, and $\left\langle p_{n+1}, z p_{n}\right\rangle=h_{n+1}$. And $z \partial p_{n+1} / \partial z=(n+1)\left(z^{n+1}\right.$ $\left.+n /(n+1) b_{n} z^{n}+\cdots\right)$. Set $z \partial p_{n+1} / \partial z=(n+1)\left(p_{n+1}+\gamma_{n} p_{n}+\cdots\right)$, which implies $\left\langle z \partial p_{n+1} / \partial z, p_{n}\right\rangle=(n+1) \gamma_{n} h_{n}$. Then by

$$
p_{n+1}+\gamma_{n} p_{n}+\cdots=z^{n+1}+\frac{n}{n+1} b_{n} z^{n}+\cdots
$$

we obtain $\gamma_{n}+b_{n}=[n /(n+1)] b_{n}$, so $\gamma_{n}=-(n+1)^{-1} b_{n}$. Thus

$$
\begin{equation*}
J=\frac{1}{s} b_{n} h_{n}+h_{n+1} . \tag{3.14}
\end{equation*}
$$

On the other hand, the integral J can be evaluated by using the recursion formula (2.8)

$$
z p_{n+1}=p_{n+2}+B_{n+1} p_{n+1}-C_{n+1} p_{n+1}-C_{n+1} B_{n} p_{n}+C_{n+1} C_{n} z p_{n-1}
$$

which gives

$$
\begin{equation*}
J=\left\langle z p_{n+1}, p_{n}\right\rangle=-C_{n+1}\left(B_{n}-C_{n}\right) h_{n} . \tag{3.15}
\end{equation*}
$$

By (3.14) and (3.15), we obtain (3.12).
We have seen by the last four lemmas that the right-hand side of (3.4) can be expressed in terms of B_{n} and C_{n}. The following lemma gives the formulae of B_{n}, C_{n} in terms of κ_{n}.
Lemma 6. The coefficients B_{n}, C_{n} in the recursion formula (see (2.9) and (2.10)) can be expressed as follows:
(a)

$$
\begin{equation*}
B_{n}-C_{n}=-\frac{\left(\kappa_{n}^{2}\right)_{s}}{2 \kappa_{n}^{2}} \tag{3.16}
\end{equation*}
$$

$$
\begin{equation*}
B_{n}=-\frac{\left(\kappa_{n}^{2}\right)_{s}}{2\left(\kappa_{n}^{2}-\kappa_{n-1}^{2}\right)} \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
C_{n}=-\frac{\kappa_{n-1}^{2}}{2 \kappa_{n}^{2}} \frac{\left(\kappa_{n}^{2}\right)_{s}}{\kappa_{n}^{2}-\kappa_{n-1}^{2}} \tag{3.17}
\end{equation*}
$$

where κ_{n} is the leading coefficient of ϕ_{n} defined by (1.1), and $\left(\kappa_{n}^{2}\right)_{s}=\mathrm{d} \kappa_{n}^{2}(s) / \mathrm{d} s$.

Proof. Since $h_{n}=\left\langle p_{n}, p_{n}\right\rangle$, we have

$$
\begin{equation*}
\frac{\mathrm{d} h_{n}(s)}{\mathrm{d} s}=\oint p_{n}(z) \overline{p_{n}(z)}\left(z+\frac{1}{z}\right) \mathrm{d} \mu=2 \oint z p_{n} \overline{p_{n}} \mathrm{~d} \mu \tag{3.19}
\end{equation*}
$$

where we have used $\left\langle\partial p_{n} / \partial s, p_{n}\right\rangle=\left\langle p_{n}, \partial p_{n} / \partial s\right\rangle=0$, since $\operatorname{deg}\left(\partial p_{n} / \partial s\right) \leqslant n-1$, $\operatorname{deg}\left(\partial \overline{p_{n}} / \partial s\right) \leqslant n-1$. Then by lemma 1 and the notation $h_{n}=2 \pi \mathrm{i} / \kappa_{n}^{2}$, we have the first formula (3.16). By (2.9) and (2.10) $C_{n}=B_{n} \kappa_{n-1}^{2} / \kappa_{n}^{2}$. We then obtain (3.17) and (3.18).

By lemmas 2-4, equation (3.4) is changed to

$$
\begin{gather*}
1=\frac{n}{s}\left(b_{n-1}-b_{n}\right)-\frac{1}{s} b_{n-1}-C_{n+1}\left(B_{n}-C_{n}\right)+\left(B_{n}-C_{n}\right)^{2} \\
-C_{n}\left(B_{n-1}-C_{n-1}\right)+\frac{1}{s}\left(B_{n}-C_{n}\right) . \tag{3.20}
\end{gather*}
$$

By lemma 5, this equation further becomes

$$
\begin{equation*}
\frac{n+1}{s}\left(B_{n}-C_{n}\right)+\frac{h_{n}}{h_{n-1}}-1-C_{n+1}\left(B_{n}-C_{n}\right)+\left(B_{n}-C_{n}\right)^{2}=0 . \tag{3.21}
\end{equation*}
$$

Therefore, by lemma 6, we have proved the following theorem.
Theorem 1. The leading coefficient $\kappa_{n}(s)$ of the orthonormal polynomials $\phi_{n}(z ; s)$ defined by (1.1) satisfies the following spatially discrete equation (difference-differential equation):

$$
\begin{equation*}
\frac{n+1}{2 s} \frac{\left(\kappa_{n}^{2}\right)_{s}}{\kappa_{n}^{2}}-\frac{\kappa_{n-1}^{2}-\kappa_{n}^{2}}{\kappa_{n}^{2}}+\frac{1}{4} \frac{\left(\kappa_{n+1}^{2}\right)_{s}}{\kappa_{n+1}^{2}} \frac{\left(\kappa_{n}^{2}\right)_{s}}{\kappa_{n+1}^{2}-\kappa_{n}^{2}}-\frac{1}{4}\left(\frac{\left(\kappa_{n}^{2}\right)_{s}}{\kappa_{n}^{2}}\right)^{2}=0 \tag{3.22}
\end{equation*}
$$

where $s=\sqrt{\lambda}$, and $\left(\kappa_{n}^{2}\right)_{s}=\mathrm{d} / \mathrm{d} s\left(\kappa_{n}^{2}\right)$.
This seems to be a new result for $\kappa_{n}(s)$, the leading coefficients of the orthonormal polynomials $\phi_{n}(z ; s)$, with the weight $\exp (s(z+1 / z)) \mathrm{d} z / z$ on the unit circle. In the next section, we show that as $n, s \rightarrow \infty$ and $2 s /(n+1) \rightarrow 1$, this equation is reduced to a third-order ordinary differential equation which is equivalent to the Painlevé II equation.

4. Painlevé II equation

We have shown that κ_{n}^{2} satisfies equation (3.22). As mentioned in section $1, \kappa_{n}^{2}$ satisfies the boundary condition $\kappa_{n}^{2}(s)=1+\mathrm{o}(1)$, as $n \rightarrow \infty$ for all s. In this section, we compute the asymptotics of $\kappa_{n}^{2}-1$, as $n, s \rightarrow \infty$. We will see that the asymptotics involves the second Painlevé function.

Equation (3.22) has two independent variables n and s. To study the asymptotics, we use 'similarity' reduction, or the so-called double-scaling method. By comparing the first two terms in (3.22), we consider the case when $n+1$ and s are of the same order as they are large, and let

$$
\begin{align*}
& \frac{c_{3} s}{n+1}=1+\frac{c_{2} t(n, s)}{(n+1)^{\beta}} \tag{4.1}\\
& \kappa_{n}^{2}=1+\frac{c_{1}}{(n+1)^{\alpha}} R(T(n, s)) \tag{4.2}
\end{align*}
$$

where we assume $T(n, s)=t(n, s)+\epsilon(n, s)$, the leading term $t(n, s)$ is defined by (4.1), $\epsilon(n, s)$ is a smaller term as $n, s \rightarrow \infty$, and α, β will be discussed later. We want to determine
the constants $\alpha, \beta, c_{1}, c_{2}, c_{3}$, such that as $n, s \rightarrow \infty$, the difference-differential equation (3.22) is reduced to an ordinary differential equation of $R(t)$.

Let us consider the approximate expressions of $\left(\kappa_{n}^{2}\right)_{s}, \kappa_{n+1}^{2}-\kappa_{n}^{2}$ and $\left(\kappa_{n+1}^{2}\right)_{s}-\left(\kappa_{n}^{2}\right)_{s}$ in terms of R^{\prime} and the higher-order derivatives. Here R^{\prime} means the limit of $(R(T+\Delta T)-R(T)) / \Delta T$. The primary part of ΔT is Δt, and it can be calculated that as $n, s \rightarrow \infty$, and $c_{3} s /(n+1) \rightarrow 1$, we have

$$
\begin{aligned}
t(n+1, s)-t(n, s) & =-\frac{\beta}{c_{2}(n+1)^{1-\beta}}+\frac{c_{3} s}{n+1} \frac{-1+\beta}{c_{2}(n+1)^{1-\beta}}+\mathrm{O}\left(\frac{1}{(n+1)^{2-\beta}}\right) \\
& =-\frac{1}{c_{2}(n+1)^{1-\beta}}+\mathrm{O}\left(\frac{1}{n+1}\right) .
\end{aligned}
$$

We see that β should be chosen such that $0<\beta<1$, and then the rest term is $\mathrm{O}(1 /(n+1))$. For the asymptotics of $\kappa_{n+1}^{2}-\kappa_{n}^{2}$ and $\left(\kappa_{n+1}^{2}\right)_{s}-\left(\kappa_{n}^{2}\right)_{s}$, the higher-order terms must be considered in order to have all the terms in the first three leading orders in the expansion of left-hand side of (3.22). Therefore, we have the following:
$t(n+1, s)-t(n, s)=\frac{c_{4}}{(n+1)^{1-\beta}}+\cdots$
$\kappa_{n+1}^{2}-\kappa_{n}^{2}=R^{\prime} \frac{c_{5}}{(n+1)^{1+\alpha-\beta}}+R^{\prime \prime} \frac{c_{6}}{(n+1)^{2+\alpha-2 \beta}}+R^{\prime \prime \prime} \frac{c_{7}}{(n+1)^{3+\alpha-3 \beta}}+R \frac{c_{8}}{(n+1)^{1+\alpha}}+\cdots$
$\kappa_{n-1}^{2}-\kappa_{n}^{2}=-R^{\prime} \frac{c_{5}}{(n+1)^{1+\alpha-\beta}}+R^{\prime \prime} \frac{c_{6}}{(n+1)^{2+\alpha-2 \beta}}$

$$
-R^{\prime \prime \prime} \frac{c_{7}}{(n+1)^{3+\alpha-3 \beta}}-R \frac{c_{8}}{(n+1)^{1+\alpha}}+\cdots
$$

$\left(\kappa_{n}^{2}\right)_{s}=\frac{c_{1} c_{3}}{c_{2}} R^{\prime} \frac{1}{(n+1)^{1+\alpha-\beta}}+\cdots$
$\left(\kappa_{n+1}^{2}\right)_{s}-\left(\kappa_{n}^{2}\right)_{s}=\frac{c_{1} c_{3}}{c_{2}(n+1)^{1+\alpha-\beta}}\left(R^{\prime \prime} \frac{c_{4}}{(n+1)^{1-\beta}}+\frac{R^{\prime \prime \prime}}{2} \frac{c_{4}^{2}}{(n+1)^{2-2 \beta}}\right)+\cdots$
where

$$
\begin{array}{ll}
c_{4}=-\frac{1}{c_{2}} & c_{5}=c_{1} c_{4} \\
c_{7}=\frac{1}{6} c_{1} c_{4}^{3} & c_{8}=-c_{1} \alpha . \tag{4.4}
\end{array}
$$

Now write (3.22) in the following form:

$$
\begin{aligned}
& \frac{n+1}{2 s}\left(\kappa_{n}^{2}\right)_{s}\left(\kappa_{n+1}^{2}-\kappa_{n}^{2}\right)-\left(\kappa_{n-1}^{2}-\kappa_{n}^{2}\right)\left(\kappa_{n+1}^{2}-\kappa_{n}^{2}\right)+\frac{1}{4}\left(\kappa_{n}^{2}\right)_{s}\left(\kappa_{n+1}^{2}\right)_{s} \\
&-\frac{1}{4} \frac{\kappa_{n+1}^{2}-\kappa_{n}^{2}}{\kappa_{n+1}^{2}}\left(\kappa_{n}^{2}\right)_{s}\left(\kappa_{n+1}^{2}\right)_{s}-\frac{1}{4} \frac{\left(\left(\kappa_{n}^{2}\right)_{s}\right)^{2}}{\kappa_{n}^{2}}\left(\kappa_{n+1}^{2}-\kappa_{n}^{2}\right)=0 .
\end{aligned}
$$

By substituting the asymptotic formulae above into this equation, we obtain

$$
\begin{equation*}
S_{1}+S_{2}+S_{3}+S_{4}+\mathrm{o}(1)=0 \tag{4.5}
\end{equation*}
$$

where
$S_{1}=\frac{c_{1} c_{3}^{2}}{2 c_{2}}\left(1-\frac{c_{2} t}{(n+1)^{\beta}}\right) \frac{R^{\prime}}{(n+1)^{1+\alpha-\beta}}$

$$
\times\left\{\frac{c_{5} R^{\prime}}{(n+1)^{1+\alpha-\beta}}+\frac{c_{6} R^{\prime \prime}}{(n+1)^{2+\alpha-2 \beta}}+\frac{c_{7} R^{\prime \prime \prime}}{(n+1)^{3+\alpha-3 \beta}}+\frac{c_{8} R}{(n+1)^{1+\alpha}}\right\}
$$

$S_{2}=\frac{c_{5}^{2}\left(R^{\prime}\right)^{2}}{(n+1)^{2+2 \alpha-2 \beta}}+\frac{2 c_{5} c_{7} R^{\prime} R^{\prime \prime \prime}}{(n+1)^{4+2 \alpha-4 \beta}}+\frac{2 c_{5} c_{8} R^{\prime} R}{(n+1)^{2+2 \alpha-\beta}}-\frac{c_{6}^{2}\left(R^{\prime \prime}\right)^{2}}{(n+1)^{4+2 \alpha-4 \beta}}$
$S_{3}=\frac{c_{1} c_{3}}{4 c_{2}} \frac{R^{\prime}}{(n+1)^{1+\alpha-\beta}}\left\{\frac{c_{1} c_{3}}{c_{2}} \frac{R^{\prime}}{(n+1)^{1+\alpha-\beta}}+\frac{c_{1} c_{3}}{c_{2}(n+1)^{1+\alpha-\beta}}\left(\frac{c_{4} R^{\prime \prime}}{(n+1)^{1-\beta}}+\frac{c_{4}^{2} R^{\prime \prime \prime}}{2(n+1)^{2-2 \beta}}\right)\right\}$
$S_{4}=-\frac{c_{5}}{4 \kappa_{n+1}^{2}}\left(\frac{c_{1} c_{3}}{c_{2}}\right)^{2} \frac{\left(R^{\prime}\right)^{3}}{(n+1)^{3+3 \alpha-3 \beta}}-\frac{c_{5}}{4 \kappa_{n}^{2}}\left(\frac{c_{1} c_{3}}{c_{2}}\right)^{2} \frac{\left(R^{\prime}\right)^{3}}{(n+1)^{3+3 \alpha-3 \beta}}$.
We have seen that $0<\beta<1$. For α, since $\kappa_{n}^{2}(s) \rightarrow 1$, as $n \rightarrow \infty$ for all s, we have $\alpha>0$. Consider the orders of the terms on the left-hand side of (4.5). The coefficients of $\left(R^{\prime}\right)^{2}, R^{\prime} R^{\prime \prime}, R^{\prime} R^{\prime \prime \prime},\left(R^{\prime \prime}\right)^{2}$ have orders $2(1+\alpha-\beta), 2(1+\alpha-\beta)+(1-\beta), 2(1+\alpha-\beta)+2(1-\beta)$, $2(1+\alpha-\beta)+2(1-\beta)$, respectively. The coefficients of $t\left(R^{\prime}\right)^{2}, R R^{\prime},\left(R^{\prime}\right)^{3}$ have orders $2(1+\alpha-\beta)+\beta, 2(1+\alpha-\beta)+\beta, 2(1+\alpha-\beta)+(1+\alpha-\beta)$, respectively. And the o(1) in (4.5) contains higher-order terms which do not concern us. To determine the values of α and β, the only choice is to set the coefficients of $R^{\prime} R^{\prime \prime \prime},\left(R^{\prime \prime}\right)^{2}, t\left(R^{\prime}\right)^{2}, R R^{\prime}$ and $\left(R^{\prime}\right)^{3}$ to be of the same order. So we have $2(1-\beta)=\beta=1+\alpha-\beta$. The solution is unique $\alpha=\frac{1}{3}, \beta=\frac{2}{3}$. So (4.5) becomes

$$
\begin{align*}
A_{1} \frac{\left(R^{\prime}\right)^{2}}{(n+1)^{4 / 3}} & +A_{2} \frac{R^{\prime} R^{\prime \prime}}{(n+1)^{5 / 3}} \\
& +\left(A_{3} R^{\prime} R+A_{4} R^{\prime} R^{\prime \prime \prime}+A_{5}\left(R^{\prime \prime}\right)^{2}+A_{6} t\left(R^{\prime}\right)^{2}+A_{7}\left(R^{\prime}\right)^{3}\right) \frac{1}{(n+1)^{2}} \\
& +O\left(\frac{1}{(n+1)^{7 / 3}}\right)=0 \tag{4.6}
\end{align*}
$$

where

$$
\begin{aligned}
& A_{1}=\frac{c_{3}}{2} \frac{c_{1} c_{3}}{c_{2}} c_{5}+c_{5}^{2}+\frac{1}{4}\left(\frac{c_{1} c_{3}}{c_{2}}\right)^{2} \\
& A_{2}=\frac{c_{3}}{2} \frac{c_{1} c_{3}}{c_{2}} c_{6}+\frac{1}{4}\left(\frac{c_{1} c_{3}}{c_{2}}\right)^{2} c_{4} \\
& A_{3}=\frac{c_{3}}{2} \frac{c_{1} c_{3}}{c_{2}} c_{8}+2 c_{5} c_{8} \\
& A_{4}=\frac{c_{3}}{2} \frac{c_{1} c_{3}}{c_{2}} c_{7}+2 c_{5} c_{7}+\frac{1}{8}\left(\frac{c_{1} c_{3}}{c_{2}}\right)^{2} c_{4}^{2} \\
& A_{5}=-c_{6}^{2} \\
& A_{6}=-\frac{1}{2} c_{1} c_{3}^{2} c_{5} \\
& A_{7}=-\frac{1}{2}\left(\frac{c_{1} c_{3}}{c_{2}}\right)^{2} c_{5}
\end{aligned}
$$

The $A_{j} \mathrm{~s}(j=1,2, \ldots, 7)$ can be expressed in terms of c_{1}, c_{2}, c_{3} by using (4.3) and (4.4), and it is seen that $A_{2}=0$.

Look at equation (4.6). As $n \rightarrow \infty$, the leading term gives an equation $\left(1-c_{3}^{2} / 4\right)\left(R^{\prime}\right)^{2}=$ 0 . If we choose $c_{3}^{2} \neq 4$, then $R^{\prime}=0$, which implies $\kappa_{n}^{2}(s)=1+$ constant $/(n+1)^{1 / 3}+\cdots$, as $n, s \rightarrow \infty, c_{3} s /(n+1) \rightarrow 1$. If we choose $c_{3}^{2}=4$, then $A_{1}=A_{3}=0$, and as $n \rightarrow \infty$, equation (4.6) is reduced to

$$
\begin{equation*}
A_{4} R^{\prime} R^{\prime \prime \prime}+A_{5}\left(R^{\prime \prime}\right)^{2}+A_{6} t\left(R^{\prime}\right)^{2}+A_{7}\left(R^{\prime}\right)^{3}=0 \tag{4.7}
\end{equation*}
$$

In [2], Tracy and Widom discussed two forms of the Painlevé II equation

$$
\begin{align*}
& \frac{1}{2} \frac{R^{\prime \prime \prime}}{R^{\prime}}-\frac{1}{2} \frac{\left(R^{\prime \prime}\right)^{2}}{\left(R^{\prime}\right)^{2}}-\frac{R}{R^{\prime}}+R^{\prime}=0 \tag{4.8}\\
& \left(R^{\prime \prime}\right)^{2}+4 R^{\prime}\left(\left(R^{\prime}\right)^{2}-t R^{\prime}+R\right)=0 \tag{4.9}
\end{align*}
$$

where $R^{\prime}(t)=-q(t)^{2}$, and $q(t)$ satisfies the original Painlevé II $q^{\prime \prime}=t q+2 q^{3}$. Equation (4.9) is called the Jimbo-Miwa-Okamoto σ-form for Painlevé II. Eliminating R in (4.8) and (4.9) gives another form,

$$
\begin{equation*}
-2 R^{\prime} R^{\prime \prime \prime}+\left(R^{\prime \prime}\right)^{2}+4 t\left(R^{\prime}\right)^{2}-8\left(R^{\prime}\right)^{3}=0 \tag{4.10}
\end{equation*}
$$

In (4.7), it can be calculated that $A_{4}=-2 A_{5}$ since $c_{3}^{2}=4$. Let $A_{6}=4 A_{5}$ and $A_{7}=-8 A_{5}$. These two equations can be written as algebraic equations of c_{1}, c_{2} by using (4.3) and (4.4), and the solution is

$$
\begin{align*}
& c_{1}=-2^{1 / 3} \tag{4.11}\\
& c_{2}=-\frac{1}{2^{1 / 3}} . \tag{4.12}
\end{align*}
$$

For the c_{3}, since we consider positive n and s, c_{3} is positive, i.e. $c_{3}=2$. That implies that if we choose $c_{1}=-2^{1 / 3}, c_{2}=-1 / 2^{1 / 3}, c_{3}=2$ in (4.1) and (4.2), the spatially discrete equation (3.22) in theorem 1 is reduced to the Painlevé II equation (4.10). That is why we call (3.22) a spatially discrete Painlevé II equation. And it is seen that $\epsilon(n, s)=\mathrm{O}\left(1 /(n+1)^{1 / 3}\right)$ because the last term in (4.6) is $\frac{1}{3}$ order higher than the preceding term.

Therefore, we have a formal proof of the following theorem which was first proved by Baik et al [3] by studying the corresponding Riemann-Hilbert problem.
Theorem 2. As $n, \sqrt{\lambda} \rightarrow \infty$, and $2 \sqrt{\lambda} /(n+1) \rightarrow 1, \kappa_{n}^{2}(\lambda)$ has the following asymptotic formula:

$$
\begin{equation*}
\kappa_{n}^{2}(\lambda)=1-\frac{2^{1 / 3}}{(n+1)^{1 / 3}} R(t)+\mathrm{O}\left(\frac{1}{(n+1)^{2 / 3}}\right) \tag{4.13}
\end{equation*}
$$

where t is defined by $2 \sqrt{\lambda} /(n+1)=1-t /\left[2^{1 / 3}(n+1)^{2 / 3}\right], R^{\prime}(t)=-q^{2}(t)$, and $q(t)$ satisfies Painlevé II $q^{\prime \prime}=t q+2 q^{3}$.

As discussed in [3], the Painlevé II function $q(t)$ in theorem 2 satisfies the boundary condition $q(t) \sim-\operatorname{Ai}(t)$, as $t \rightarrow \infty$, where $\operatorname{Ai}(t)$ is the Airy function. This boundary condition can also be obtained by the asymptotics of κ_{n} in terms of an exponential function [1] and the Painlevé II equation that $q(t)$ satisfies. The Painlevé II function $q(t)$ with this boundary condition is discussed by Hastings and McLeod in [12].

Finally, by lemmas 5 and 6 and theorem 2, we obtain the asymptotics for the second leading coefficient of $\phi_{n}(z)$.
Theorem 3. For the polynomial $\phi_{n}(z ; \lambda)=\kappa_{n}(\lambda)\left(z^{n}+b_{n-1}(\lambda) z^{n-1}+\cdots\right)$ defined by (1.1), the second leading coefficient $\kappa_{n}(\lambda) b_{n-1}(\lambda)$ has the asymptotic formula

$$
\begin{equation*}
\frac{\kappa_{n}(\lambda) b_{n-1}(\lambda)}{\sqrt{\lambda}}=-1+\frac{1}{2^{2 / 3}(n+1)^{1 / 3}} R(t)+\mathrm{O}\left(\frac{1}{(n+1)^{2 / 3}}\right) \tag{4.14}
\end{equation*}
$$

as $n, \sqrt{\lambda} \rightarrow \infty$, and $2 \sqrt{\lambda} /(n+1) \rightarrow 1$, where t and $R(t)$ are the same as in theorem 2 .

Acknowledgments

The author sincerely thanks Professor Craig A Tracy for introducing this problem and the relevant reference papers, and especially for helpful discussions for the calculations in section 4. We also thank Professor Joel Keizer, Director of ITD, for providing very good working facilities. The author thanks the referees for their important comments, especially for the comment on the discussion of the double scaling. This work was partially supported by NSF grant DMS-9802122.

References

[1] Szegö G 1975 Orthogonal Polynomials (American Mathematical Society Colloquium Publications vol 23) 4th edn (New York: American Mathematical Society)
[2] Tracy C A and Widom H 1994 Level-spacing distributions and the Airy kernel Commun. Math. Phys. 159 151-74
[3] Baik J, Deift P and Johansson K 1999 On the distribution of the length of the longest increasing subsequence of random permutation J. Am. Math. Soc. 12 1119-78
[4] Tracy C A and Widom H 1999 Statistical Physics on the Eve of the 21st Century: In Honour of J B McGuire on His 65th Birthday ed M T Batchelor and L T Wille (Singapore: World Scientific) pp 230-9
[5] Tracy C A and Widom H 1998 Random unitary matrices, permutations and Painlevé Preprint LANL archives math.CO/9811154
[6] Hisakado M 1996 Unitary matrix model and Painlevé III Mod. Phys. Lett. A 11 3001-10
[7] Fokas A S, Its A R and Kitaev A V 1991 Discrete Painlevé equations and their appearance in quantum gravity Commun. Math. Phys. 142 313-44
[8] Ramani A, Grammaticos B and Hietarinta J 1991 Discrete versions of the Painlevé equations Phys. Rev. Lett. 67 1829-32
[9] Bassom A and Clarkson A P 1994 New exact solutions of the discrete fourth Painlevé equation Phys. Lett. A $194358-70$
[10] Jimbo M and Sakai H1996 A q-analog of the sixth Painlevé equation Lett. Math. Phys. 38 145-54
[11] Tracy C A and Widom H 1994 Fredholm determinants, differential equations and matrix models Commun. Math. Phys. 163 33-72
[12] Hastings S P and McLeod J B 1980 A boundary value problem associated with the second Painlevé transcendent and the Korteweg de Vries equation Arch. Rat. Mech. Anal. 73 31-51

